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Recommendations 
The SafeTRANS Expert group has in this presented White Paper assessed the potentials for reaching a 
key cornerstone towards safety and acceptability for highly automated vehicles, in providing a holistic 
approach towards bounding uncertainty in the perception chain. 

To reach the strategic objective of the German Government to become a leading nation in innovation 
for automated and connected driving, we propose the following recommendations: 

Research Funding  
• This milestone can only be achieved by integrating expertise in sensor technologies, AI, digital 

twins, V&V, safety methods and processes with industrial experts in building highly automated 
vehicles in one R&D strategy.  

• A seamless extension of, and continuous integration into, the achievements from preceding large 
R&D formats is another pre-requisite. 

• Cross-sectorial benefits can be exploited by integrating multiple application domains (road 
vehicles: Cars, robo-taxis, trucks, rail vehicles: Trains, Offroad vehicles: Vessels, tractors) 

Reference suites of standards for testing ADAS/AD and SDV 
• To assure high quality of the perception chain, we consider it mandatory to establish open suites 

of standards documenting the current understanding of all types of objects in the environment 
of AVs which must be recognized by AV.  

• This suites must cover the complete range of environment models such as demanded for sensor 
components, up to and including those objects which must be observed in world models of the 
AV  

• This test suite must include agreed models of dynamics of all traffic participants 
• Processes must be put in place to regularly update this test suite based on incidents and accidents 

related to mis-classifications and mis-assessments during operation of AVs and subsequently 
integrated into the operating systems of software-defined vehicles. 

Sharing models and data 
• The investments required for achieving high-quality sensor models demand the establishment of 

instruments allowing the sharing of data and enabling interoperability while protecting 
individual IP and ensuring compliance to anti-trust regulations. 

• It is suggested, that the GAIA-X Initiative is involved in providing solutions to support such data 
exchange platforms and interoperability of models. 

Regulations  
• Type certification must be understood as a continuous process allowing for over-the-air updates 

of software components of the perception chain mandated from learning from in-field incidents 
and accidents. 

• The development of open standards and global harmonization led by German industry are key to 
success. 

 
  



Summary 
This paper provides an approach for controlling the level of risk when operating highly automated 
transportation systems like cars, trains and similar. Such systems replace human perception and decision-
making by employing highly sophisticated solutions based on electronics, IT, and AI. Such systems have 
demonstrated the potential for building highly automated vehicles, but, as of today, encounter 
challenges in correctly understanding the extremely complex open contexts, into which such vehicles 
could be deployed. Its key focus is on bounding the risks stemming from uncertainty in the perception 
of the environment. 

 

 

The approach presented in this paper is building on and elaborating major results achieved in previous 
projects of the VDA strategic initiative on highly autonomous driving (Pegasus, VVM, SetLevel, KI-
Absicherung), the Joint Undertaking ECSEL (Enables-S3), the Vivid (Vivaldi und DIVP) Consortium and 
the safe.trAIn Project. We collectively refer to these as background projects. 

To bound the risks stemming from uncertainty in the perception chain, we follow the high- level flow 
depicted in Figure 2 below. 
 

 

Figure 2  High Level Flow 
Specifically, we aim to synergistically combine advanced approaches in: 

1. Building and validating “highly accurate” sensor models in field trials, including modelling of 
artefacts causing distortion of perceptions. 

2. Building and validating “highly accurate” environment models of complex open world contexts, 
including environment conditions influencing distortion of perceptions. 

3. Building and validating “high accuracy” digital twins of the perception chain to establish 
(situation dependent) statistical guarantees for bounding the level of uncertainty in the 

Figure 1 High Level Objectives and Approach of the White Paper 



perception of the environment, taking into account dynamic reconfiguration and degradation. 
4. Developing metrics which take safety relevance explicitly into account in giving precise definition 

to the required degree of accuracy for items 1-3 above, providing the basis for safety assurance 
cases. 

5. System architectures, which allow to dynamically tune the degree of precision of perception 
a. by determining the criticality of objects of the ego system´s environment 
b. based on prediction of the short-term evolution of this environment. 
c. The system architecture combines this top-down attention focus with a bottom-up 

propagation of the current level of uncertainty 
d. allowing for optimal resource usage of dynamically integrating sensors and classifiers and 

sensor fusion components 
e. so as to compensate weaknesses of sensors operating in currently distorting environments 

by high quality measurements of sensors operating in favorable environmental conditions 
f. This allows to inductively derive formal assurance guarantees in achieving the required 

degree of precision needed for safety case arguments. 
6. On-line monitoring of all conditions critically influencing the achievable degree of precision, such 

as conditions causing distortions of sensors and compliance to ODDs 
7. System architectures offering safe degradation when such monitors signal risks in distortion of 

perception, or lack of compliance to ODDs, or alarms raised by health-state monitoring of 
system components. 

 
  



 

1. Motivation and Industrial Relevance 
1.1 Motivation 
Automated vehicles are one of the most promising solutions for the greatest challenges of modern 
mobility: emission reduction, effective time management and comfort for modern citizens. This paper 
presents an approach to provide (probabilistic) guarantees on the maximum level of uncertainty in the 
perception chain of highly automated transportation systems, building on significant results achieved 
in previous projects of the VDA strategic initiative on highly autonomous driving (Pegasus, VVM, 
SetLevel, KI-Absicherung), the Joint Undertaking ECSEL (Enables-S3), the Vivid (Vivaldi und DIVP) 
Consortium and the safe.trAIn Project. These projects have set the stage to enable verification and 
validation methods for highly automated transportation systems2 operating in complex environments.  

The VVM project3 has established in combination with the SetLevel project a holistic approach for 
building safety assurance cases for highly automated vehicles. Figure 3 below highlights the key 
addressed concepts for a methodology for establishing safety of level 4/5 vehicles. 
 

 

It developed 
• A Methodology for efficient control of the test area 
• A Validation methodology across all system levels 
• An approach for the generation of a continuous testing sequence across all test platforms from 

simulation to real world driving 

The Set Level Project4 has been supporting V&V of highly automated system by providing a credible 
simulation platform and supportive processes methods and tools supporting the key industry trend 
towards digitalization and virtualization in product development and therefore virtualized validation 
and release. 

The Vivaldi project4 has been working on the assessment of virtual validation methods for autonomous 
driving functions with a focus on sensors. Vivaldi has teamed up with the Japanese DIVP (Driving 
Intelligent Validation Platform)5 project in order to synergize and collaborate under the label VIVID 
(German Japan Joint Virtual Validation Methodology for Intelligent Driving Systems)6. The key 
objective of both projects is the design and implementation of a virtual validation tool chain, reaching 
from SiL- (Software-in-the-Loop) to OTA/ViL-methods (Over-The-Air, Vehicle-in-the-Loop), connecting 
software-based traffic and sensor simulations with propagation modelling and over-the-air hardware-
in-the-loop testing in virtual environments. 

                                                           
2 SAE levels 2 and higher in the automo�ve domain, see [SAE] 
3 htps://www.vvm-projekt.de/en/concept 
4 htps://setlevel.de/en 

Figure 3 Key research areas addressed by the VVM project 



The European research project ENABLE-S3 (European Initiative to Enable Validation for Highly 
Automated Safe and Secure Systems)5, funded through the ECSEL JU programme has established a 
comprehensive platform for the cost-effective validation and verification of autonomous and highly 
automated vehicles, trains, tractors, ships, aircraft, satellites and medical examination equipment. 
ENABLE-S3 has been following a use-case driven approach: requirements for the project are coming 
from industrial use cases within the 6 industrial domains, and each technical solution is required by a 
specific use case. 

 

The basic architecture developed within ENABLES-S3 is nowadays used by leading companies, e.g., 
customers of AVL, to design and test alternative solutions for automated driving and its multifaced 
demands within the development process. 

In the railway industry solutions for completely driverless and unattended operation of trains have 
been successfully established on the market and in operations. Until now, however, these systems 
have been operating exclusively in controlled and closed environments, such as subway tunnels. The 
safe.trAIn project, funded by the BMWK and running since January 2022, is focusing on applying this 
technology for use in regional trains. Such trains operate in more open environments in which it is 
necessary, in particular, to reliably recognize obstructions – such as people on the lines as well as fallen 
trees or mudslides on the tracks, etc. 

The project goals are to perform integrated development of testing standards and of methods for using 
AI to automate rail transportation and to use example applications to verify the suitability of test 
standards. Focal points here will be on AI-based methods for driverless regional trains, approval-
relevant validation of the product safety of the AI components, as well as testing processes and testing 
methods. 

While certain cross project synergies have been achieved through partners involved in all projects 
(such as the PerCollECT & CEPRA methods on hazard analysis of sensor systems [LRS+2021] and 
derivation of resulting requirements for hazard containment in testing sensor systems), this white 
paper brings together for the first time the joint expertise of the above projects to close the remaining 
gaps towards safety assurance of highly automated transportation systems. Key challenges remain in 
their compromised maneuverability and performance in bad weather conditions, such as rain, snow, 
dust storms, or fog, which can compromise vision and range measurements (degradation of the 
visibility distance). In such conditions, the performance of most current active and passive sensors is 
significantly compromised, which in turn can lead to erroneous and even misleading outputs of the 
perception chain. The current achievements still suffer from significant limitations in realism of 
                                                           
5 htps://cordis.europa.eu/project/id/692455/results 

Figure 4 A sample instantiation of the EnableS3 integration platform building on Tronis 



models and simulations in the perception chain, such as anomalies based on noise, EMI, bad lighting 
(low sun angle, specular reflections), poor target resolution, and issues in dealing with shadows, 
foreign objects on road, reflections, glare, worn or occluded signs and markings, the contextual 
diversity of traffic interaction, etc. Even if we were able to find models which faithfully represent all 
objects of the physical system which is modelled, such models would be way too complex to allow 
large-scale cloud-based system testing. This White Paper performs a gap analysis: what is missing to 
achieve safety assurance cases for highly autonomous systems meeting standards such as ISO 26262 
and ISO 21448 under affordability constraint maximize virtually generated evidences to reduce 
physical testing to demonstration of faithfulness of virtual models, and proposes research directions 
to close these gaps. It proposes a divide and conquer approach in generating bounds on uncertainties, 
in propagating quality guarantees bottom up along the different stages of the perception chain, thus 
paving the way for reducing the complexit of models. Jointly, the proposed research will allow to 
provide (probabilistic) guarantees on the maximum level of uncertainty in the perception chain of 
highly automated transportation systems. These guarantees will subsume guarantees on level of 
confidence in existence and classification of objects in the world model determined by perception 
chain, as well as guarantees on precision of measurements for all physical attributes of all objects in 
the world model. Jointly, these will provide an approach to construct assurance cases for the safe 
execution of maneuvers of highly automated transportation systems within given ODD, being based 
on guarantees of the quality of perception of all entities in the world model provided by the perception 
chain. In identifying what properties and characteristic of which element of the perception chain can 
be established on what abstraction level, we strive for reducing the complexity of models integrated 
in digital twins to a level amenable for large scale virtual driving. 

 

1.2 Industrial Relevance 
Sophisticated sensor systems are now an integral part of consumer vehicles, and 92% of new cars sold 
in the US include some Advanced Driver Assistance Systems (ADAS) such as autonomous emergency 
braking systems, adaptive cruise control, park assist, and lane departure warning, which are defined 
as partial automation (Level 2 autonomy) under Society of Automotive Engineers [SAE2018]. The 
Global Advanced Driver Assistance Systems Market size was valued at USD 20.74 billion in 2020 and is 
estimated to grow USD 48.37 billion by 2028, at a CAGR of approximately 11.6% between 2021 and 
2028, according to a recent research study published by Zion Market Research6. The first Level 3 
features have recently been approved for use in commercial vehicles, e.g., both Honda and Mercedes 
have received regulatory approval for Advanced Lane Keeping System (ALKS) [UN2021], with the Drive 
Pilot of Mercedes expected to be available in the market by the end of this year in Germany within its 
S-Class. According to a market study by Fortune Business Insights7, the increasing demand for road 
safety is driving the growth of the Advanced Driver Assistance Systems. The perception system forms 
an integral part of such ADAS systems. It is clearly safety critical at Level 3 as, for example, failure to 
correctly identify lane markings could lead an ALKS-equipped vehicle to stray from the current lane. 
While aiming to support construction of safety assurance cases for Level 3 and Level 4 systems, the 
approach of the project to heavily rely on highly accurate digital twins, thus allowing to reduce the 
amount of physical field testing, is immediately relevant for Level 2 applications as well because of the 
expected reduction of V&V costs. Additionally, even for Level 2 systems, reducing the risk of 
misperceptions8 through the proposed quality assurance measures is of immediate market relevance.  
Achieving a significant part of assuring the quality of perception through digital twins is thus not only 
an enabler for achieving the necessary coverage levels required for L3/L4 safety assurance cases, but 

                                                           
6 htps://www.globenewswire.com/en/news-release/2023/05/29/2677668/0/en/Latest-Global-Advanced-Driver-Assistance-Systems-
ADAS-Market-Size-Share-Worth-USD-48-37-Billion-by-2028-at-a-11-6-CAGR-Zion-Market-Research-Industrial-Trends-Report-Analysis-
Player.html, published May 29 2023 
7 htps://www.fortunebusinessinsights.com/industry-reports/adas-market-101897 
8 poten�ally causing accidents, e.g., rear-end collisions caused by unwarranted emergency braking 



also contributes to reducing costs for V&V of L2 and L3 systems. Moreover, given the regional 
differences in regulatory approaches, it strengthens the competitiveness of German automotive 
industries in being able to achieve a large part of the learning curve towards highly automated driving 
not only by test fleets but by driving in high-accuracy digital models of the environment and the 
perception system. Achieving this level of precision in such digital twins demands a concerted effort of 
industry and research, integrating top expertise in modelling and validation and verification across all 
levels of the perception chain. Integrating these results with the overall system verification approaches 
including as well trajectory planning and maneuver execution as provided by the VVM and SetLevel 
projects thus closes the gap towards achieving safety assurance cases for highly automated vehicles. 

In automated trains there are already existing commercial offerings for fully automated trains, such as 
the Nuremberg Metro which started operations in 20089, which however operates in a highly 
constrained Operational Design Domain.  Other existing market offerings include assistance functions 
for lower Grades of Automation (GoA). However, like in the automotive domain, an unsolved challenge 
is the availability of robust perception systems that enable highly-automated operation in 
unconstrained environments. Nevertheless, due to legal regulations and the underlying trackside 
infrastructure (e.g., train protection systems) the kind of objects which have to be reliably detected 
differ from those required in the automotive domain. For instance, it can be assumed that no persons 
and no other trains occupy the trackway, while in contrast all obstacles which could lead to a 
derailment of the train have to be reliably detected. Moreover, as such critical incidents are highly rare 
events, it is unrealistic to generate sufficient amounts real-world training data, e.g., for the training of 
AI based perception systems, only by live recordings of fleet data. Therefore, suitable approaches for 
generating synthetic data are needed. 

 

Figure 5 Automation in the Railway Domain 

 

 

1.3 Structure of White Paper 

                                                           
9 htps://www.railway-technology.com/projects/neuremburgautobahn/ 



 

 

This paper is organized as follows. 

Part I Fundamental Concepts contains three sections. We describe the overall approach towards 
bounding uncertainties in Section 2. Section 3 discusses the type of Quality Metrics and Quality 
Guarantees required to provide a rigid formal argumentation bases for bounding the level of risks 
stemming from uncertainties. The Verification and Validation methods required to demonstrate these 
are described in Section 8, while requiring customization for their specific use-cases described in Parts 
II and Part III. 

Part II focusses on the Digital Twin. Section 4 discusses, for all relevant classes of sensors, the 
construction of highly accurate sensor models and sensor environment models, and refers to 
approaches developed in Section 8 for verifying the type of quality guarantees described in Section 2. 
Section 5 discusses how the various techniques for sensor fusion used in industry can be enriched in 
order to propagate and improve quality guarantees from sensors by sensor fusion, and demonstrating 
these with instantiations of verification and validation methods described in Section 8. Section 6 
discusses methods to fuse such quality guarantees to achieve high confidence world models of the 
environment of the system as an interface to trajectory planning, and discusses requirements on a 
faithful “credible” open simulation framework for digital twins allowing to incorporate the sensor 
models of Section 4 and sensor fusion components, such that simulations executed in the digital twin 
meet quality requirements as defined in Section 3 on the level of accuracy in matching the physical 
closed loop systems of the perception chain and the environment. 

Part III Towards Safety Assurance Cases discusses in its section 7 architectural requirements to support 
bounding the uncertainty in the perception chain. The key Section 9 shows how the combined 
evidences gained from field testing and virtual testing in the highly accurate digital twin can be combined 
using the V&V techniques of Section 8 into a Safety Assurance Cases for highly automated vehicles. 

 

1.4 Disclaimer 
This paper focusses on risks coming from the uncertainty of the perception of the environment of the 
ego-system operating in complex environments. While bounding this risk is a necessary precondition 
for assuring safety of highly automated vehicles, it is by no means a sufficient condition. Specifically, 

Figure 6 Structure of the White Paper 



in this paper we abstract from all of the following sources all impacting overall safety, by assuming a 
number of idealizations for system components, as outlined below. 

1. The execution platform in the deployed system differs from the execution platform used for the 
digital twin 

2. HW/SW failures 
3. Systematic causes of risks in the prediction engine 
4. Incomplete characterization of environment 
5. Faults of maneuver decision layer or Faults of maneuver execution layer 
6. We now list for each of these the idealization/abstraction from these aspects used in this paper. 

Risk source 1: The execution platform in the deployed system differs from the execution platform 
used for the digital twin 

We assume an idealized execution platform meeting the so-called synchrony hypothesis underlying 
the synchronous programming paradigm (see e.g., [BER2004]), which essentially states that the 
underlying hardware is so powerful, that all timeliness constraints and causality constraints of all tasks 
are met. See e.g. [TPB+2008] for an example of how real architectures can be built to achieve this. In 
general, it requires a separate verification effort to demonstrate that all non-functional requirements 
such as regarding real-time requirements and causality constraints of a given application are actually 
met in the target architecture. 

Risk source 2: HW/SW failures 

For traditional functional safety applications, the approach and risk management of programmable 
systems are well defined within the framework standards that organize the design, development and 
deployment of a safety system within a given operational domain/sector. To achieve functional safety 
in the presence of HW/SW failures in safety-critical applications, rigorous processes are mandated to 
ensure necessary levels of fault tolerance, redundancy or reliability needed to achieve safety goals. 
Systems must be designed, verified, validated, built, and operated in a way that minimizes the risk of 
harm or more formally achieves a demonstratable tolerable risk, see e.g. (ISO/IEC 610508 Series, and 
ISO 26262). We rely on such processes in assuming in this paper, that all components of the execution 
platform are free from HW/SW failures. 

Risk source 3: Systematic causes of risks in the prediction engine 

In this paper we propose a methodology for designing the perception chain of the ego-system to 
constantly compute high accuracy models of the environment of the ego-systems called Lagebild, with 
guaranteed bounds on the uncertainty on state and physical attributes of all relevant objects in the 
environment of the ego system (see the following Chapter 2 for a first summary of the overall approach 
used to achieve this, and the notion of “relevance”). Given such a Lagebild at time t, it is the task of 
the prediction engine to assess the potential future evolution of the state and physical characteristics 
of all relevant objects in the environment of the ego-system in order to determine next possible 
maneuvers of the ego-vehicle in order to meet the current set of goals of the ego-system. 

Even if we assume, that classification of such objects and their state meets such quality criteria, there 
are inherent causes for mispredictions of the future evolution of such systems: models of the dynamics 
of such systems are by necessity only of statistical nature, hence any individual relevant object 
occurring in the Lagebild might deviate within the distributions coming with such models. Moreover, 
such models are not able to reflect internal invisible mode-changes of such a system; the perception 
chain must be designed to perceive all cues of such systems possibly triggering a mode-change, hence 
leading to a potentially radically different dynamic model for the anticipated behavior of this system. 
The identification of all such cues for all types of mode-changes of the behavior of environment 
systems is out of the scope of this paper. In this paper we assume, that such an analysis has been 
carried out, and that dynamic models of objects in the environment are parametrized to cater for 
mode-changes whenever such cues have been perceived. We assume that all such relevant cues are 
part of the annotation of relevant objects in the Lagebild, and thus also labeled with the degree of 
confidence with which these cues have been identified. 



Risk source 4: Incomplete characterization of environment 

This paper assumes, that there is an agreed current state of understanding about what objects in the 
environment of the ego-system are potentially relevant for safe operation of the ego-system. 

This assumption is extremely difficult to meet. 

Taking the automotive domain as an example, this assumption goes far beyond the current level of 
pre-standardization which is currently developed as part of the projects of the VDA Leitinitiative for 
autonomous driving, since it must among others encompass all aspects of the environment impacting 
reflection and absorption properties of active sensors. 

The overall underlying challenge of operating in an open context has been addressed by the system-
safety community with by now well-established heuristics, learning from previous incidents and 
accidents, and turning this knowledge into guiding questions for system design, demanding systems 
engineers to study for any aspect of the environment found to be causally relevant for an accident or 
incident, whether appropriate measures have been taken to observe such aspects.  

In this paper, we assume, that there is a documented and eventually standardized state of the art of 
what entities in the environment of the ego-system must be observable, and assume, that deployed 
systems are designed to not only observe all such aspects of the environment, but also allow updates 
in the field to accommodate for any changes in standards as to what must be observable. 

Risk source 5: Faults of maneuver decision layer or Faults of maneuver execution layer 

In this paper we complete abstract from the implementation of the maneuver decision layer and the 
maneuver execution layer of the ego system and assume these to be free of faults. 
 
  



2. Overall Approach 
 

 

Figure 7 

Bounding the risks stemming from uncertainty in the perception of complex open environments of 
highly autonomous transportation systems relies on a layered and segmented structure, consisting of 
the real physical system and environment and its digital twin, both reaching from the component level 
of the physical sensors to the level of sensor fusion, and both considering relevant environmental 
artefacts, eventually leading to a world model (“Lagebild”) meeting given confidence requirements. 
This approach rests on a notion of what we call "sufficiently perfect components" of the perception 
chain, which allow to inductively derive such guaranteed bounds on the maximum level of uncertainty, 
provided the system is currently operating in sensor-specific specified environmental conditions, and 
in well-defined operational design domains (ODD).  

The induction basis will be provided by “sufficiently perfect sensors”. Such sensors come with a 
characterization of their behavior under adverse environmental conditions known to be detrimental 
to such guarantees in an intrinsic sensor-specific way, such as type and intensity levels of precipitation 
(e.g., fog for lidar, rain or snowfall for radar), illumination (e.g., straylight or backlight for camera and 
lidar, poor reflectivity of objects for lidar), or multipath propagation (e.g., reflection, refraction, or 
diffraction for all sensor modalities).  

We will use real-field tests to generate scenario-based reference data for virtual sensor models 
demonstrating not only sufficiently precise processing of raw data in non-adverse conditions, but 
which are also additionally able to demonstrate the same degradation effects as real sensors. This will 
allow us to quantitatively assess the level of uncertainty not only based on field measurements, but 
using large test sets of highly reproducible, adjustable and scalable environmental conditions in digital 
twins of the sensors and their environment, continuously validated against the reference data. In 
addition to these intrinsic uncertainties resulting from the type and performance of the sensor and its 
integration in the perception chain, we will also characterize extrinsic uncertainties from 
environmental factors which are partly controllable by the ego system, such as analyzing the level of 
precision and uncertainty of dynamic attributes like position, velocity, direction, as well as current 
vibration levels etc. We also include "sufficiently perfect digital maps" with precise information of 
geometrical arrangements and material properties of the environment suitable for each sensor 



modality as anchoring components in the perception chain. 

For each type of output of a sensor, the probabilistic guarantees given under non-adverse conditions 
and known levels of controllable disturbances of the ego vehicle will include for each individual object 
in a given dynamic situation of the representation at that sensor output 

• a quantification of existential uncertainty, 
• a quantification of the confidence categorization of the type of artefact, if applicable, and 
• a quantification of the distributions of imprecision of physical attributes of such artefacts 

observable by this particular sensor system at this particular interface. 

We collectively refer to these guarantees as guarantees for bounding uncertainty. 

We propagate such guarantees along the perception chain by requiring what we call “sufficiently 
perfect sensor fusion components” and “sufficiently perfect classifier components”. This idea of 
propagating uncertainties across the perception chain was first mentioned in [STE2016] 10 and recently 
in [PPF2023]. It was implicitly also anchored in [MDM2010], in that sensor components were required 
to be enriched with quality attributes as a basis for Dempster-Shafer based sensor fusion. The meta-
requirements for such components demand that each such component comes again with a 
characterization of adverse environmental conditions and allowed ODDs. For example, a classification 
component can only be required to provide guarantees for bounding uncertainty if the actual 
environment of the ego system is matching the characteristics in the data used for training classifier 
components with respect to types of objects, distribution of objects, and (if applicable) dynamic 
properties of objects in the analyzed sensor stream. [SMH+2022] demonstrates an approach bounding 
uncertainty in neural networks. For sensor fusion components, adverse conditions will be derived 
dynamically. Specifically, all inputs must be decorated by a characterization of those sensor-specific 
relevant environmental conditions under which they were collected, time stamps of raw data used, 
the component type delivering this input, and the adverse conditions of this component type. As 
proposed in [MDM2010], we will use approaches akin to Dempster-Shafer adapted to the guarantees 
for bounding uncertainty, to compute the maximal probabilistic guarantees for uncertainty for output 
streams of such components, and determine the adverse conditions by conjoining adverse conditions 
of components providing input streams with high relevance in strengthening guarantees for bounding 
uncertainty. At the highest level of the perception chain, sensor fusion components provide what is 
often called a “world model”. This is comprising all artefacts in the environment of the ego system 
relevant for maneuver decisions, with guarantees for bounded uncertainty. Such guarantees can be 
further strengthened by exchanging such world models with neighboring systems or information 
provided by infrastructure components. Jointly, we can thus derive for each stage in the perception 
chain the joint (as various objects may induce the same driving decision and individual uncertainties 
can thus be amortized) level of uncertainty for relevant environmental entities11for maneuver 
decisions of the ego system, such as those provided from the prediction and decision layer. 

We combine this approach with what is referred to in the literature as attention driven perception, 
which relies on a quantitative assessment of the dynamic evolution of the ego-systems environment 
to determine, which objects and entities and which of their physical attributes are critical for 
guaranteeing safe evolution of the dynamics of the ego-vehicle in the currently perceived world-
model. This attention focus allows to dynamically configure components of the perception chain 
maximizing quality of perception for these critically relevant environment observations, while at the 
same time optimizing resource usage supporting the computation of such guarantees for bounding 
uncertainty, as initially proposed in [HMG+2023]. 

 

                                                           
10 We note, however, that the approach of Stellet does not attempt to model the effect of adverse conditions (see e.g., p.27: „Due to the 
high complexity of the interplay between lighting conditions, object surface and algorithm, this effect is not modelled explicitly but subsumed 
by a fixed percentage of valid measurements.”) 
11 See e.g., [HMG+l2023] for a defini�on of „relevant“ 



To formally establish both the quality of models and verify the guarantees for bounding uncertainty, 
we will build on the results of the background projects to extend these methods to the type of quality 
guarantees required by this approach. 

In consequence, this overall approach is further detailed according to the following building elements:  
• Quality metrics and quality guarantees,    
• Sensor characterization and sensor modelling, 
• Sensor fusion and classification, 
• Virtual twins and simulation environments 
• Architectural requirements 
• Validation and verification methods and processes, and the 
• Derivation of safety assurance cases. 

 
 

 



3. Quality Metrics and Quality Guarantees 
Highly automated vehicles (HAV) promise safer and more efficient mobility solutions. However, their 
successful deployment hinges on their ability to navigate and make decisions in the face of complex, 
dynamic, and often unpredictable real-world environments. When operating in these open contexts, 
HAVs must contend with many challenges, especially perception uncertainty. Any incomplete or 
incorrect information can lead to potentially hazardous outcomes. As such, understanding and 
managing perception uncertainty is paramount to ensuring the overall safety and reliability of HAVs. 

This chapter investigates the representation of perception uncertainty within sensor models, 
environment models, and digital twins of the complete perception chains, to define quality metrics 
and quality guarantees as a formal foundation for bounding the risks posed by perception 
uncertainties. In general, uncertainty can be categorized as follows (see [KD2009]):  

• Epistemic Uncertainty: This type of uncertainty arises from incomplete knowledge or information 
gaps. It is often reducible through further research, data collection, or improved understanding. 
Epistemic uncertainty is associated with known unknowns and can be reduced with more data 
or improved models. 

• Aleatory Uncertainty: Also known as stochastic uncertainty, aleatory uncertainty is inherent 
randomness or variability in a system. It is often irreducible and represents the inherent 
unpredictability of certain events or processes. 

In assessing the safety of HAVs, it is important to recognize that the evaluation cannot be confined 
solely to the perception chain. Hazards arising from imperfect perception only manifest when we 
consider the entire ego vehicle within its dynamic environment. These hazards often exhibit intricate 
interdependencies with the vehicle's planning algorithms and interactions with surrounding traffic. In 
the forthcoming discussion, we will introduce a mathematical framework designed to bound 
uncertainty comprehensively. This framework serves as a robust foundation upon which both the 
planner and vehicle control systems can operate, ensuring the safe navigation of HAVs in complex real-
world scenarios. 

In the following, we first outline a mathematical setting for quantifying perception uncertainty that 
considers the various influencing factors impacting perception quality. As a starting point, we formalize 
a meta requirement for the quality of the perception chain in a probabilistic linear-time temporal logic, 
with observables defined by valuations of all attributes of all instances of classes within the electronic 
horizon of the ego, over a typed first-order signature induced by the types of attributes in the ontology. 
Ideally, for each point in time, the ground truth of all relevant objects (note that relevance is a dynamic 
property and cannot be fixed at design time) in ego’s electronic horizon, in particular position and 
speed of surrounding traffic participants, road- and weather conditions, coincide exactly with the ego’s 
beliefs about these objects.  

We must relax this unachievable ideal by considering standard measurement errors, and allowing 
classifications to be vague, as long as they are correct with respect to the ordering relation in the 
ontology (i. e., the ground truth classification is a specialization of the believed classification). While 
misclassifications and misperceptions will occur, we want these to be bounded by the societally 
accepted level of risk12. We assume for each relevant object a a metric da that measures the distance 
between ground truth and the beliefs ego has about a. Additionally, we assume a safe level of 
measurement tolerance13 δa.. We want these to be consistent almost always for a minimal time period 
∆ sufficient to take safe maneuver decisions for the HAV. Comparing this to the acceptable level of 
misperception (derived from the overall risk of the HAV operation) 𝑃𝑃𝑀𝑀 leads us to the following formal 

                                                           
12 It should be noted here, that percep�on uncertainty has a strong impact on the overall safety of HAVs. However, it is not 
feasible to assess the risk to passengers or other traffic par�cipant without considering downstream func�ons such as the 
planner or exis�ng safety mechanisms. For that reason, we will avoid using the term risk throughout this chapter and rather 
argue about the probability of mispercep�on. 
13 For realiza�on of this performance metrics from ISO PAS 8800 can be used. See also Chapter 9. 



requirement on the confidence of the perception chain of the HAV vehicle ego. 
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For now, we state that a perception is said to be precise if for all relevant objects in the proximity of 
the ego vehicle holds that the probability of misclassification or misperception of these relevant 
objects is bound by a certain threshold 𝑃𝑃𝑀𝑀 for a minimal time horizon ∆. Here, one might think that a 
misclassification or misperception can be indicated by an object-depending metric da exceeding an also 
object-depending tolerance level δa.  

The approach  to meet this meta requirement laid out in this white paper relies on constructing the 
necessary building blocks (sensor models, ontologies, interface formats, etc.) to achieve the following 
requirements: 

1. It must be possible to state which environmental objects are relevant at a given point in time, 
based on the current traffic situation as well as a set of planned maneuvers (see section 3.1). 

2. It must be possible to bound the contributions of each component in the perception chain to the 
overall uncertainty (see section 3.2). 
a. We must be able to specify for each component in the perception the conditions under 

which this component can be “trusted”) and complement this by continuous monitoring 
of trust conditions (i. e., absence of adversarial conditions). 

b. We must be able to quantify the accuracy of perception for each component in the 
perception chain. 

c. We must be able to describe the emergence and propagation of uncertainty through the 
system.  

3. It must be possible to quantify the accuracy of the perception of a single component via virtual 
testing (see section 3.3). 
a. We must be able to quantify the degree of precision of sensor models and environment 

models in closed-loop simulations. 
b. We must be able to quantify the impact of misclassifications or misperception of every 

relevant object for each component on the overall uncertainty. 
4. It must be possible to compose models from requirement 3 into a full digital twin of the 

perception chain and the relevant environment in order to quantify the overall perception 
uncertainty (see section 3.4). 

In the following sections, we will discuss for each of the building blocks which approaches, methods, 
and tools from the literature can be used to guarantee the respective properties. 
 

3.1. Determining Relevance of Environmental Objects 
A way to measure the relevance of an element of a given scenario to the ego, requires an ontology 
(or, at least, a taxonomy) containing classes all safety-relevant objects. Such an ontology has to be 
created at design time, starting early in the design process. For example, SOTIF triggering conditions14, 
which lead to hazardous behavior of the ego, can be identified and incorporated into the ontology. 
Then, all subsequent methods have a foundation to access such elements. For example, the system 
can initiate certain safety mechanisms during run-time if it is confronted with such triggering 
conditions. A sketch of how to iteratively construct a ”good enough” ontology based on the outputs of 
safety engineering procedures in the design and development phases is outlined by Stierand et al. 
[SWH2023]. Westhofen et al. [WNB2022] have sketched in more detail how in one concrete step – the 

                                                           
14 An example for such a triggering condi�on could be the misclassifica�on of a person riding an e-scooter as a pedestrian 
provoking the ego to assume a completely different range of mo�on and poten�ally selec�ng hazardous driving maneuvers. 



identification of abstract classes of hazards – an ontology can be iteratively completed ([WNB2022], 
Section IV-A). 

The evaluation of object relevance in dynamic environments can be based on the following 
parameters: 

• distance to the object 
• relative velocity 
• typical criticality metrics (e. g., Time-To-Collision (TTC)) 
• objects classification (e. g., vulnerable road users (VRUs)) 
• predicted behavior (e. g., crossing the ego’s path) 
• contextual situation (e. g., pedestrians close to a crosswalk) 

Very naively, measuring safety-relevancy of objects in a given scenario can be done in a standard way, 
e.g., using criticality metrics [WNK2023]. If any object exceeds a certain threshold given a set of metrics 
applicable to the current scenario, this object is clearly relevant. For example, anything with a constant-
velocity model TTC < 6 seconds might be considered relevant in car-following scenarios. Obviously, 
such an approach has limits, as relevancy estimation actually requires prediction of all possible futures. 
If there exists a future with a sufficiently large probability of realization in which a certain object is 
impacting the safety of the ego, this object can be understood as relevant. Therefore, more work is 
required especially in the area of probabilistic criticality metrics under worst-case (and not average-
case) assumptions. 

A related approach has been established in the literature: Mori et al. [MSP2023] define a relevant 
object in a given scenario as any object that limits “the set of safe actions available to the ego under 
consideration of all uncertainties”. However, this approach requires a formal definition of the set of 
safe actions of the ego, which Mori et al. showed only exemplarily for a rather simple highway use 
case. The complexity of such a definition grows by orders of magnitudes when advancing to urban 
environments. Moreover, the approach requires valid and over-approximating prediction models for 
all other dynamic objects, which is, again, highly involved for complex ODDs. However, their evaluation 
for highway contexts is encouraging for expanding such a definition of relevance to more complex 
contexts. Finally, these ideas consider only dynamic elements for ”relevancy”. However, a lot of traffic 
infrastructure, such as traffic signs or markings, are relevant for the ego's behavior as well. Thus, it has 
to be researched whether the definition of relevancy from Mori et al. [MSP2023] can be extended to 
include static objects, and how such a formal relevancy estimation for static objects may look like. A 
possible solution is a counterfactual (thus, causal) argumentation (“Would the element not have been 
perceived, would the likelihood of the ego exhibiting hazardous behaviors be increased?”). 

Rakow [RAK2023] suggests a game-theoretic characterization of relevance. The central idea is to 
capture relevance as “What do you need to know in order to achieve your goals?”. Relevance is 
reduced to the question of whether there exists a strategy for an autonomous system S so that it is 
successful when following this strategy, given certain knowledge (K), observations (O) and resources 
for encoding its beliefs (B). The approach regards a tuple (K,O,B) to be relevant, when it is sufficient 
for S to be successful and the tuple (K,O,B) minimal. The notion hence not only captures whether the 
observed objects are factually relevant for achieving the system's goals (whether the road is slippery 
is relevant if the S wants to brake or do a turn) but rather whether the system needs to perceive/know 
certain aspects (whether the road is slippery is not relevant to S if S wants to brake or do a turn and S 
knows that is a speed limit requesting low speed anyway).  

Damm et al. [DFH+2019a] investigate conflicts between traffic participants arising dynamically in traffic 
scenarios where participants act on local and incomplete perception to fulfill their goals. Determining 
such a conflicting situation provides valuable input into identifying which objects are relevant. 

Damm et al. [DFH+2019b] propose to require the planning component to explicitly list the objects in 
the environment that are relevant for ensuring the safety of planned maneuvers. To this end, the 
planning component will evaluate which maneuvers would be suitable to achieve the current 
objectives of the ego-system based on dynamic models of the objects identified in the current situation 



picture. It will then compute weakest preconditions on objects and their classifications that must be 
guaranteed by the perception chain for such maneuvers to be safe. 

Storms et al. [SMP2023] show that it is possible to validate analytic relevance criteria by analyzing the 
effect on a motion prediction component. The motion predictor leverages a deep neural network 
(DNN) as proxy for human behavior. 

  

3.2. Bounding Uncertainty for Components in the Perception 
Chain 

For each component in the perception chain (sensors, fusion components, classifiers), probabilistic 
guarantees given under non-adverse conditions and known levels of controllable disturbances of the 
ego vehicle have to be considered. These guarantees include for  each type of object: 

 
• a quantification of existential uncertainty and cardinality 
• a quantification of the confidence categorization of the type of object, if applicable, 
• a quantification of the maximal degree of imprecision of physical attributes of such objects 

observable by this particular sensor system or classifier component at this particular interface. 

We collectively refer to these guarantees as guarantees for bounding uncertainty. 

The issue here is threefold: 
1. We need to identify whether the perception component is in its applicable domain (otherwise, 

the perception component must not be trusted at all).  
2. If we can be sure that the perception component is within its domain, an estimate of its 

probability of error (i.e., rating its performance) has to be provided. 
3. We need to access the specific details on the emergence of uncertainty and its propagation 

through the perception chain. 

These three issues as covered in the following sub-section, 3.2.1 covers the absence of adversarial 
conditions, 3.2.2 addresses perception accuracy and 3.2.3 deals with emergence and propagation of 
uncertainty. 

 

3.2.1. Absence of Adversarial Conditions 
Anomaly detection is a useful tool for identifying whether the current context contains a rare event, is 
out of distribution (i. e. not matching the distributions of objects used for training and testing), or 
actually demonstrates a domain shift where new objects have become statistically relevant in the 
considered ODD since the definition of the operational context. In all such cases, the perception 
component may behave unexpectedly. Various approaches for anomaly detection exist depending on 
the technology used, such as cameras, radar, or object-level sensors  [BNZ2022]. One example of an 
implementation of an anomaly detection is to construct a confidence score, which estimates the 
accuracy of the perception output for a given input. This can be done using the probability scores 
provided by a classifying neural network or assessing the variance in the output classes. Even more 
involved approaches exist, such as, training a reconstruction module which is then used to reconstruct 
an image from a semantic segmentation output. If the reconstruction is vastly different from the input 
to the semantic segmentation, the input is likely an anomaly and the segmentation component may 
not be trusted. These approaches are all technology-dependent, for instance, detecting anomalies in 
lidar-data since point clouds are sparser during rain. It is evident that this area is under active research 
and more work is required to handle the detected anomaly (e. g., a low confidence score) downstream 
(see Section 3.2.3). An approach how this can be achieved is discussed in Chapter 5. 
 



3.2.2. Accuracy of Perception for Individual Component  
In the Safe_perception(ego) formula above, the term da represents the uncertainties introduced by 
individual components in the perception chain. This metric measures the distance between the ground 
truth and the belief(ego) established by the perception chain. It is important to note that we are not 
aiming for the greatest possible approximation of the belief to the ground truth. It is only required that 
the deviation is smaller than the given maximum deviation δa.. With suitable abstraction in the 
construction of component and environment models, considerable complexity can be saved while it is 
still guaranteeing the necessary high-level properties. 

In addition, the respective quality metrics must consider that uncertainties do not only depend on the 
sensor type (radar vs. lidar vs. camera). Other uncertainties arise from the respective realization of the 
sensor (e. g., wavelength of the radar may have an impact on its susceptibility to weather conditions) 
as well as from factors such as placement of the sensor on the ego vehicle. Representation of 
uncertainties in component models and the impact on quality metrics will be further discussed in 
Section 3.3. 

Salay et al. [SCK+2021] give a method to represent risk-aware performance metrics which could be 
relevant for this. The main idea is to incorporate the probability that the perception failure leads to a 
crash into the performance metric, thus excluding performance degradations that have no impact on 
the overall system safety (e. g., a systematic performance degradation in an irrelevant area behind the 
vehicle). 
 

3.2.3. Emergence and Propagation of Uncertainty 
Risk propagation poses a serious challenge, as it requires, per definition, a valid representation of how 
system components hierarchically contribute to the overall risk. A possibility of such a representation 
is the use of a safety argumentation that follows a decomposition approach along the system's 
architecture. 

Salay et al. [SCK+2021] propose exactly this: to expand a safety argumentation in a Goal Structuring 
Notation to incorporate risk propagation from the individual perception components. The core idea is 
to use deductive reasoning, starting from a system-level safety goal of bounding the collision risk due 
to misperceptions. This risk is decomposed into the risk induced by a finite set of “hazardous 
misperception patterns” (i. e., a system-level hazard that can be caused by a misperception pattern). 
Subsequently, the bound of the risk induced by an individual hazardous misperception pattern is again 
calculated by decomposition, similar to that of a system-level hazard, into what roughly equals 
exposure (how likely is the hazardous scenario to occur), controllability (how likely is a misperception 
pattern in this scenario), and severity (how likely is a crash given this scenario and misperception 
pattern). The first can be taken from the main safety case. For the latter, the authors propose a method 
of simulation combined with fault injection to obtain an estimate on the crash rate. Therefore and 
similar to the claims made in this white paper, a valid digital twin of the ego vehicle, including the 
perception chain, with a high degree of detail is required. Finally, the ”controllability” component is 
decomposed further by collecting conditions under which this misperception pattern is triggered 
disproportionately often, for which again exposure of the condition and controllability of the 
misperception pattern given this condition are separately estimated. In the end, this approach shows 
how a propagation from perception component performance ratings to the overall system level can 
be done, based on a standard decomposition approach. Note that this argument hinges on the 
completeness and correctness of the identified hazardous scenarios and thus requires methods to 
validly derive such scenarios even for open and complex contexts. Moreover, it demands further 
research in how to estimate the single quantities required as evidences: among others, the crash risk 
given a misperception, the occurrence of hazardous scenarios, or performance metrics for perception 
components. Since those quantities can often not be estimated in real-world or proving ground 
settings due to their rareness, highly detailed simulation models (digital twins) in valid simulation 



environments are needed. 

Fränzle [FHD+2023] argues that machine learning-based systems are more susceptible to noise 
overlaying percepts than humans. Assessing the functional relevance of percepts is challenging due to 
the time dimension and prediction horizon, which depend not only on observable objects but also on 
inner states. Determining the necessary degree of perceptual precision is a complex issue. The impact 
of (mis-)percepts on safety varies significantly. This approach considers the guard conditions of actions 
specified in propositional logic. The formulas refer to perception atoms.  To justify that a HAV is allowed 
to perform maneuvers, the guards must satisfy certain rates (false positive/true positive) indicating 
that the classifier is believed to perform well. Given the Boolean structure of the guards, it is possible 
to construct an optimization problem for certain types of guards. This can improve confidence in 
perception for certain types of actions. 
 

3.3. Quantifying Perception Uncertainty Through Virtual 
Testing 

Quality metrics that enable quantifying uncertainty for the different components in the perception 
chain should reflect environmental conditions, the capability to reproduce physical operation-based 
failure modes, and the overall completeness of sensor measurements. For instance, sensor models 
must be assessed in conjunction with corresponding environment models. This includes the ability to 
simulate sensor failure modes caused by physical phenomena (e.g., double images in lidar due to 
motion distortion, as illustrated in Chapter 4, Figure 12) and account for corrective mechanisms. 

Sensor-specific metrics should be tailored to each type of sensor and consider their placement on the 
vehicle, necessitating 3D modeling. The sensor’s position affects its field of view, influencing the 
disparity between perceived and actual conditions. 

Sensor fusion layers depend on these “imperfect” sensor outputs to filter and identify accurate data. 
Their metrics must address sensor-specific signals, like intensity clouds for radar or point clouds for 
lidar, and discuss the completeness of sensor measurements. 
 

3.3.1. Sensor and Environment Models 
The separation between the environment simulation models (including moving and stationary objects, 
lanes, traffic rules, weather conditions, etc.) and the sensor simulation models cannot be maintained 
when aiming for detailed perception sensor performance modeling. For instance, the shape and 
materials of surrounding objects are crucial for calculating sensor data, such as lidar point clouds. 
Therefore, the signal processing model must consider the reflection calculation as its input. To validate 
perception sensor simulation, it is necessary to validate the materials and geometries beforehand. 

The initial stage for a valid perception sensor simulation is to have control over the 3D objects and the 
digital twin of the environment. This is achieved through the use of the evolving ASAM standard 
OpenMATERIAL, which is highly supported by this initiative. 

Another often ignored aspect in model validation is the necessary diligence when collecting the 
measurement data that is later used for model validation. This means that with all collected sensor 
data, all reference data about the environment has to be collected that is later used for re-simulation 
of the measurement to produce the simulation data for validation. When these reference data (object 
positions, weather conditions, etc.) are collected, the used measurement devices itself are not perfect 
either and therefore introduce epistemic and aleatory uncertainties into the validation. Consequently, 
they must be propagated through simulation adequately, resulting in multiple slightly different 
simulations per validation sample. Introduced by Roy and Balch [RB2012], this results in multiple data 



from simulation that can be combined as so-called p-boxes15, reflecting their origin and their statistical 
properties. 

In addition, it is important to consider the specific nature of perception sensor simulation, which does 
not predict a single value for given parameters, but mimics sensor behavior and performance over 
time, including noisy output. This highlights the need for metrics that distinguish between model bias 
and model scattering error when validating sensor models, as described by Rosenberger [ROS2022]. 
In this case, model bias refers to the estimated mean error between the model's output and the actual 
sensor data, which itself may have a bias when compared to the ground truth value. According to 
Rosenberger [ROS2022], the applied metrics must account for epistemic and aleatory uncertainties 
from reference data by being applicable to p-boxes, and they must also provide values for model bias 
and model scatter error. Therefore, the Double Validation Metric is considered a strong candidate for 
comparing synthetic and real perception sensor data. In addition to the described benefits, this 
method provides results in the unit of the measured quantity. Elster et al. [ESP2023] have 
demonstrated its applicability for radar detections as well. 

As already described by Viehof [2018], only sample-wise validation is possible. This means that after 
all results are determined for all these samples, the interpolation of the errors within the parameter 
space of the later targeted application domain of the models has to be performed, resulting in model 
error predictions and the respective uncertainties of these predictions. How to interpolate within the 
application domain is seen as one of the research questions within the near future. 

Sensor models based on effects: 

Modeling Recent studies have made significant contributions to the understanding and 
implementation of sensor models, particularly in terms of how they relate to specific effects and 
conditions, such as triggering conditions or failure modes for different sensor types. 

Adee et al. [AGL2023] developed a methodology utilizing Bayesian networks to model the performance 
limitations and triggering conditions specific to sensor systems, as demonstrated in a LiDAR-based 
perception case study. This approach allows for a more nuanced understanding and prediction of 
sensor behavior under various conditions. 

Following a similar direction, Reckenzaun et al. [RWR+2024] have presented a comprehensive best 
practice guide for validating driving functions, including the perception system, within a virtual 
environment. The authors show how requirements for the perception systems can be derived from an 
ODD and how they have to be implemented. They provide detailed insights into characterizing and 
classifying the effects and properties modeled, as well as guidance on validation processes at different 
vehicle and system abstraction levels. Their approach illustrates the use of a validated toolchain to 
ensure the effectiveness and accuracy of the simulation models. 

Additionally, Linnhoff et al. [LRS+2021] have introduced a methodological framework to identify 
relevant effects that need representation in simulation models. They focus on analyzing sensor effects 
using a tree structure to delineate the relationships between various effects and employ an FMEA-like 
analysis for understanding the cause-effect chains. The tree structure is documented as part of a 
GitHub project (see https://percollect.github.io/lidarLimbs/). 

Sensor models based on measurement data: 

Aust et al. [AHD+2023a] present a methodical approach to deriving sensor model requirements based 
on radar measurement data at the detection level. They employ a variety of metrics, such as point-
cloud-to-point-cloud distance normalized by maximum detection number, intersection over union, 
total variation distance for histogram comparison, and Hellinger distance, also for histogram 
comparison. The bounds for the sensor model are established from these metric results, supplemented 
by several experimental replicates. This approach allows for a precise and comprehensive 
understanding of sensor performance and its limitations. 
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Another work by Elster et al. [ESP2023] presents an approach to derive requirements from radar 
measurement data, focusing on the radar cuboid and detection level. They utilize the Double 
Validation Metric to analyze various static scenarios, examining the impact of different environmental 
conditions such as asphalt surfaces, vegetation, rain, and other objects. The research highlights the 
significance of reproducibility and repeatability in measurements. These factors are essential for 
validating sensor models and ensuring their reliability as basis for deriving quality guarantees.  

 3D object detection and mapping: 

Mapping each sensor's measurements onto a 3D grid requires quantifying the disparity between the 
sensor measurements and the ground truth for each grid cell. This assessment is essential for 
determining the accuracy and reliability of the sensor data in representing the real world. Fernandez 
(2015) emphasized the importance of this process. 

Mori et al. [MSP2023] present a comparison between machine-based 3D object detection capabilities 
and human perceptual abilities. The authors argue that for a machine's 3D object detection system to 
be effective, it should match  human capabilities in various respects, given that humans can drive 
effectively based on their perception. This benchmarking approach focuses on human perception and 
sets a clear goal for the development of automated vehicle systems. It ensures that these systems are 
designed to meet or exceed human-level perception. 
  

3.3.2. Modeling Sensor Fusion and Classifier Components 
Fusion components play a key role in integrating data from different sensor types to correct 
perception errors and derive advanced information such as object tracking. Quality metrics for these 
components must therefore cover a wide range of effects to ensure comprehensive evaluation.  

Each layer within the system architecture, especially the sensor layer, is responsible for accurately 
representing the current level of perception uncertainty. This detailed representation is critical to the 
effective operation of the fusion layer. 

The reliability of the fusion layer is highly dependent on a thorough understanding of the sensor 
characteristics, including type, positioning, performance parameters, and how environmental 
conditions impact sensor performance. Chapter 5 reviews different fusion concepts and AI 
architectures used in classifiers, and discusses phenomena that affect perception uncertainty, 
referencing work such as Munz et al. [MDM2010]. 

Reducing uncertainty through sensor data fusion, such as combining lidar and camera data, hinges on 
the statistical independence of disturbance sources. Hence, the quality metrics must carefully consider 
and account for potential confounding factors. 

Classifier components, typically based on machine learning (ML), require specific considerations for 
their quality metrics. They need to account for: 

• The appropriateness of the selected ML architecture and its training process. 
• The accuracy, correctness, and completeness of training and test datasets. 
• Representation of rare events in both training and testing phases. 

To reduce and limit the uncertainty inherent in classification processes, several strategies have been 
found to be successful. When defining quality metrics and guarantees targeting classifier components 
the following approaches should be taken into consideration:  

• Implementing a strategy where inputs are processed multiple times through classifiers, cross-
referencing results with existing world knowledge to minimize misclassification. 

• Identifying objects that contradict known physics (e.g., erratic class changes or unrealistic physical 
location shifts) to flag potential perception errors. 

• Utilizing standardized and comprehensive ontologies to detect inconsistencies in measurements. 
• Leveraging high precision maps and preexisting knowledge to resolve conflicting perceptions. 



Confidence in classifiers is maximized when the conditions leading to errors are well understood. This 
includes characterizing favorable conditions for AI components, quantifying the disparity between 
current measurements and ground truth, and monitoring for adversarial conditions. Damm et al. 
[DFH+2019b] propose a method for increasing confidence in the perception chain by bounding 
perception uncertainty. 

Furthermore, Simon Burton and; Benjamin Herd [BH2023] discuss several sources of uncertainty of in 
ML-based classification. Their work proposes a range of methods and measures aimed at limiting 
misclassification and enhancing the overall performance and safety assurance of ML models. 
 

3.4. Quantifying the Overall Accuracy of the Perception Chain 
Assuming that the models of all sensors relevant for the construction of the world model, the 
environment, the fusion components and the classifiers (covered in Chapters 4 and 5) are good enough 
to reproduce all relevant sources of uncertainty, the overall accuracy of perception can be assessed 
based on a digital twin of the perception chain. Neurohr et al. [NKM+2023] demonstrate this by 
comparing the distributions of the generated observation of the digital/virtual twins and the ground 
truth process.  

Additional deviations between the digital twins of the perception chain and the ground truth, such as 
those resulting from different characteristics of the execution platform, are out of scope in this context 
(see Section 1.4). 

The integration of component guarantees can be based on safety cases as proposed by Salay 
[SCK+2021]. In these, system-level arguments are linked to unit-level arguments, allowing the 
investigation of misperceptions as a function of context and the assessment of their impact. The safety 
case template focuses on hazardous misperception patterns that separate the analysis of HAV 
dynamics from perception. This approach aims to identify patterns of misperception that can lead to 
hazardous situations, allowing for targeted mitigation strategies. Risk-aware performance metrics are 
defined that compute a measure of the misperceptions generated by a component. Unlike generic 
performance metrics (e.g., recall, mAP, AuPR), which consider any deviation from ground truth as bad, 
these metrics consider only deviations that are hazardous. 
  



4. Sensor Characterization and Sensor Modelling 
In this chapter, the environment simulation and an overview of radar, lidar and video camera models 
is given. The chapter outlines a model overview from the literature, presents validation initiatives, and 
highlights existing research gaps. Subsequently, digital maps are described, along with their application 
in the same format. All topics listed here share a commonality in lacking a methodology that defines 
the requisite precision of the models with respect to the specific use case. 

 

4.1  Environment Simulation 
The use of environment simulation plays a crucial role in the development and safety validation of 
automated vehicles, particularly in the area of sensor simulation for cameras, lidar and radar. These 
models are central to virtually recreating realistic scenarios and testing the performance of vehicle 
systems under different conditions. Cameras, lidar and radar capture the environment and provide 
data for navigation and vehicle control. Extensive testing and simulation is required to ensure that 
vehicles can operate safely in all possible conditions. This is where environment simulation comes into 
play. 
 

4.1.1 Use Cases 
Environment simulation represents the vehicle's physical environment in a virtual world. They include 
roads, buildings, other vehicles, pedestrians and all potential obstacles. Sensor simulation models are 
used to generate data similar to what a vehicle's sensors would collect in the real world in different 
conditions. This allows engineers to simulate different scenarios, including challenging weather 
conditions, traffic congestion and unpredictable events. Environment simulation allows accurate and 
repeatable evaluation of the performance of sensors and vehicle systems. Errors can be detected and 
corrected early, increasing the safety and public acceptance of automated vehicles. 

The adaptation of the environment model to the sensor model and its interfaces is of paramount 
importance. In the case of object-based ideal models, for instance, positions and corresponding 
classifications of objects in the physical environment of the vehicle are sufficient. However, for 
complex models like ray tracing-based methods for sensor simulation, intricate 3D geometries are 
required, complete with material properties. This allows the virtualization of the effects of reflection, 
transmission, and absorption at surfaces struck by electromagnetic radiation in the virtual world. 
 

4.1.2 Sensor modalities 
In addition to the objects in the vehicle environment, the properties of the atmosphere also play a 
significant role in sensor performance. Radar is less affected by rain than time-of-flight lidar. Camera 
sensors are limited in their performance due to changes in brightness (e.g., tunnel entry/exit) or day 
and night situations. Consequently, such environmental conditions must also be part of a valid 
environmental model. 

As shown in Figure 8 , the different wavelength ranges of the various sensor modalities are affected 
differently. Radar is in the mm range, lidar is in the infrared range between 1550 to 850 nm, and the 
visible light for the classic camera is between 750 and 300 nm. Also shown in the figure is the 
attenuation of the output due to various weather effects. 



 

Figure 8: Specific attenuation over frequency for radar, lidar and camera and different environmental conditions 16 

 

4.1.3 Object and material properties 
The fundamental three-dimensional structure of objects is theoretically dissociated from the sensor 
modality. However, considerations such as the granularity of 3D-object meshes hold significant 
importance. This is because various sensor resolutions impose distinct prerequisites on the creation of 
a valid environment model. Nevertheless, it is noteworthy that the current state of scientific 
knowledge lacks comprehensive investigations addressing this aspect in detail. 

Furthermore, distinct challenges manifest themselves, particularly with regard to material properties. 
The variations in wavelength ranges result in disparities in the phenomena of reflection, transmission, 
and absorption. In this context, a significant reliance on factors such as surface roughness, surface 
temperatures, material thicknesses, and surface moisture is anticipated. One exemplary environment 
model implementation is shown in Figure 9. The 3D geometry is based on a glTF-file with an addition 
of different extensions. Thereby the material file can be defined by means of the OpenMATERIAL 
format, which is just started as an official ASAM standardization project. 
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Figure 9: Exemplary material properties implementation based on the Japanese DIVP project17 

 
In conclusion, the following open research questions arise from the current state of the art: 
 

1. In which quality does an environment model have to be provided at different distances from the 
sensor (level of detail and mesh granularity of e.g. 3D models)? 

2. How can an environment model and its quality be validated to ensure credible simulation? 
3. Which number of materials and which properties (physical properties like permeability, 

permittivity, temperature, roughness) are necessary for a valid environment model? 
4. How can the material assignment and 3D geometry generation be accelerated to enable 

industrial virtualization of scenes? 
 

4.2  Radar 
In the rapidly advancing realm of automotive technology, Radio Detecting and Ranging (radar) sensors 
have emerged as pivotal components in enabling a safer and more efficient driving experience. These 
sensors utilize electromagnetic waves to detect and track objects in the vehicle’s vicinity, providing 
essential data for advanced driver assistance systems (ADAS) and autonomous driving functionalities. 
One of the key concepts in radar technology is the frequency modulated continuous wave (FMCW) 
chirp sequence radar, which offers enhanced accuracy and reliability. In the context of automotive 
applications, radar can be categorized into short- and long-range radar. Short-range radar sensors use 
the 24 GHz so-called K-band and long-range radars use the 77 GHz so-called W-band. 

New developments in the radar field deal with Synthetic Aperture Radar applications, bistatic arrays 
around the vehicle and 150 GHz frequency ranges. 
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4.2.1 Principles of Operation 
Radar sensors emit electromagnetic waves, typically in the microwave frequency range, which travel 
through the environment and bounce off objects in their path. By analyzing the returning signals in 
comparison to the emitted signal, the sensor can determine by FFT algorithms the distance, speed, 
and estimates the azimuth and elevation angle of these objects. This process allows radar sensors to 
detect obstacles, pedestrians, vehicles, and other potential hazardous and non-hazardous objects 
around the vehicle. In Figure 10, a simplified radar processing chain is visualized with the different 
sensor output interfaces. In the current state of the art, object lists are normally used to realize 
environment detection in combination with other sensors. In the future, less processed data will gain 
importance due to machine learning approaches like detections, which are already defined in ISO 
23150 as a sensor interface, or the radar cuboid. 

 

 

Figure 10: An abstracted radar processing chain with elements visualized as blocks with rounded corners. The group within 
the processing chain is visualized as dashed rounded blocks and the sensor interfaces are marked as edged blocks.18 

 

4.2.2 Artifacts and Effects 
The terms “artifacts” or “effects” describe characteristics in radar measurement which lead to a 
deviation in the output interface with a varying degree of significance. Holder19 defines an artifact as 
“noticeable deviation from ground truth in the sensor readings that is inherent in the sensor 
measurement principle and its system design”. Linnhoff et al. define an effect as “the deviation from 
the originally existing information about the environment in the signal or data”.20 Both definitions have 
in common that the deviation from an undisturbed measurement in comparison to the resulting 
measurement is an artifact respectively effect. Due to some main effects in radar measurements, a list 
of the strengths and weaknesses can be derived: 

Strengths of Radar Sensors: 
1. Versatile Weather Resistance: Radar sensors can reliably operate in adverse weather conditions 

such as rain, snow, or fog, as the electromagnetic waves they use can penetrate these 
obstacles. 

2. Extended Range: Radar sensors can detect objects at significant distances, which is crucial for 
responding to potential hazards or obstacles well in advance. 

3. Insensitive to Lighting Conditions: Unlike optical sensors, radar sensors are not dependent on 
daylight or darkness, providing consistent performance around the clock. 

4. Object Detection Regardless of Color and Shape: Radar sensors are based on electromagnetic 
reflection, allowing them to detect objects regardless of their color or shape. 

5. Detection of Multiple Objects: Many radar sensors can simultaneously track and identify 
multiple objects within their detection range, advantageous for complex traffic scenarios. 

6. Speed Measurement: By applying the Doppler effect, a radar sensor can directly measure not 
only the distance but also the speed of moving objects. 

7. Influence of Multipath Propagation: In multipath propagation, radar waves can be reflected 
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from the road surface and from objects, making obscured objects visible. 

Weaknesses of Radar Sensors: 
1. Reduced Spatial Resolution: Compared to optical sensors, radar sensors offer lower capability 

to distinguish objects with similar distances and relative radial velocities from one another like 
parking cars. 

2. Limited Detail Recognition: Automotive radar sensors are not able to provide detailed 
information about the shape, size, or type/class of detected objects. 

3. Limited Accuracy at Short Distances: Due to the limited number of radar oscillations within a 
short distance, distance resolution can be compromised in close proximity. 

4. Challenges in Classification: Radar sensors might struggle to differentiate between different 
types of objects since they rely on electromagnetic reflection and do not consider visual 
features. 

5. Interference from Other Sensors: In densely populated areas or near other vehicles, radar 
sensors can be affected by interference from other radar systems. 

6. Ghost targets from Clutter and Multipath Propagation: Due to signal processing based on 
dynamic thresholds, radar sensors are prone to clutter caused by the environment. In addition, 
the material properties of road objects result in multipath propagation of the electromagnetic 
wave, which can create ghost objects or detect objects in front of other vehicles. 

7. Angle and relative velocity ambiguities: Due to the aperture size and radar signal processing, 
ambiguities occur in the angle and velocity measurements, causing detections and objects to 
be misinterpreted 

More detailed artifacts as well as a hierarchical structuring with information about the interaction of 
different effects can be found on Github at PerCollECT RadarRami.21 

 

4.2.3 Assessment of Radar Sensors 
To analyze different effects in radar measurements in the context of model validation, different 
experiment designs arise in literature. Ngo gives an overview about radar model validation 
experiments separated into the validation scope, the corresponding author and the validation 
method.22 Additionally, the publications in Table 1 address radar sensor model validation. 

Table 1: Radar model validation experiments by author and the corresponding validation method 

Authors Valida�on method 
Aust et al.23 Qualita�ve, one dynamic scenario 
Aust et al.24 Quan�ta�ve, one dynamic scenario 
Elster et al.25 Qualita�ve, one dynamic scenario with mul�ple objects 
Elster et al.26 Quan�ta�ve, one sta�c scenario 
Elster et al.27 Quan�ta�ve, six sta�c scenarios 
Magosi et al.28 Quan�ta�ve, one dynamic scenario 

 

From the sources listed, it appears that there is currently no uniform methodology for creating 
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experiments for radar sensors. In particular, reference data and their accuracies are underrepresented 
in the model evaluation. Furthermore, within radar sensors, various effects exist as presented in 1.2.2, 
each of which necessitates individual validation to substantiate the model's capabilities with 
corresponding thresholds and metrics. Therefore, another gap in the state of the art is present: 

1. Which experiments are necessary for which effects and thereby ensure that effect isolation is 
possible and quantifiable? 

2. How can the uncertainties introduced by reference sensors be accounted for in the validation 
process, and what are the necessary reference sensor accuracies associated with the specific 
perception sensor in this regard? 

 

4.2.4 Modeling of Radar Sensors 
The simulation of radar sensors in virtual environments is of great interest in the ADAS community. 
Besides the different effects and their corresponding modeling approaches, the categorization as well 
as the application to different use cases is not yet standardized. Magosi et al. summarize in the 
literature known categorizations and available modeling approaches in the context of automotive 
applications.29 Thereby, they introduce their own categorization scheme, which is shown in Figure 11, 
as well as an explanation about the differences in the modeling approaches and the used simulation 
techniques. 

 

Figure 11: Categorization of modeling approaches defined by Magosi et al. 

Based on the mentioned survey, still open research questions arise, which have to be addressed in the 
future: 

1. How exactly do artifacts need to be implemented in the radar model and how can their influences 
be quantified in means of testable requirements? 

2. Which effects have to be observed on which output in which quality and how can this be verified? 
3. What effects result from the interaction of multiple radar sensors, be it sensor systems on the 

ego vehicle or sensors from other road users? 
 

4.2.5 Model verification/ validation 
 

Model verification and validation is a very extensive field and is strongly influenced by the respective 
sensor technology (radar, lidar, camera, ultrasonic) and the targeted data interfaces. The generated 
synthetic data from the model has not only to follow the physical laws but also needs to be comparable 
with the original sensor measurement data for any given scenario and sensor variant. The potential 
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data interfaces (based on radar) are described in the following Figure 12. 

 

Figure 12: Potential interfaces and processing steps of a virtual (radar-) sensor. 

 

The complexity of the verification and validation processes increases in correlation with the number 
and impact of various effects when data is utilized within the radar sensor at earlier stages. The number 
of dimensions and the dependencies to specific hardware effects increasing rapidly. It is recommended 
to use the interface 4 (s. Figure 12), on the Radar Detection Image (RDI - ISO23150) this interface is 
already standardized and also includes some processing parts of the original input data (I/Q - data 
[Interface 1]) of the sensor. Therefore, the complexity is already reduced and the handling of the data 
is easier.  

For validating this data, a generic method and metric is required. In the VIVALDI project the chosen 
metric is and Area Validation Metric (AVM). In Continental a submetric of the AVM was chosen, the 
Mahalanobis Distance. This metric judges the quality of the virtual processed data points compared to 
the real measurements based on the Key Performance Indicators (KPI). The Mahalanobis Distance is 
suitable as it accounts for correlation between datasets. It is used frequently with large datasets with 
manifold correlations. In Figure 13 following observation can be made for and Car-to-Pedestrian 
Longitudinal Adult scenario from the Euro NCAP catalog. 



 

Figure 13: Mahalanobis Distance for a CPLA with ego velocity vego=30 km/h and pedestrian velocity vp = 5 km/h. 

 

Good initial overlap between measurement and simulation data. The spread of the distance is in both 
cases very similar. Some differences occur due to walking and driving uncertainties of real people 
compared to simulated scenarios. Most of these effects are from the differences in the ground truth 
data. 

Based on the presented exemplary evaluation final research questions arise: 
1. Which metric is suited for which interface in the radar processing chain to prove validity of effects 

and have additional statistical methods be provided? 
2. How can simulation models utilize interpolation and extrapolation to extend their validity within 

a specific parameter space within the ODD? 
  



4.3  Lidar 
Lidar sensors, as shown in Figure 14 , have gained significant attention over the past few years for their 
use in advanced driver-assistance system (ADAS) applications because they provide outstanding 
angular resolution and high ranging accuracy compared to radar [BIL2022]. 

 

 

Figure 14: Lidar sensor on a test vehicle 

 

4.3.1 Lidar Technologies 
To make it simple, each automotive lidar sensor consists of three subsystems: transceiver with 
transmitter (laser) and receiver (detector), beam steering and the required control/processing. 
Commercially available automotive lidar sensors can be classified according to their beam steering 
subsystem into two categories, non-scanning, and scanning sensors, based on their beam steering 
technology (Figure 15). 
 



 

Figure 15: Lidar beam steering technologies for automotive applications 

Flash lidar sensors are non-scanning types of lidars. They illuminate their entire field of view (FoV) at 
once by a laser source and do not contain any mechanical moving parts to steer the beam [RCG2021]. 
Non-scanning lidar sensors can measure up to 50 m and are used for forward collision warning (FCW) 
and blind spot detection (BSD) [THA2016]. Scanning lidar sensors steer the laser beam in the FoV by 
using mechanical moving parts to obtain the complete 3D view of the vehicle’s surroundings in a 
specific frame rate [RB2019]. Moreover, a scanning lidar sensor focuses its laser beam in a particular 
area for one shot. Therefore, they can measure objects up to 200 m with a typical horizontal and 
vertical resolution of 0.1 deg, depending on the frame rate [RB2019]. That is why they are used for 
lane departure warnings (LDW), simultaneous localization and mapping (SLAM), FCW, and BSD 
[RB2019]. Specifically, MEMS-based lidar sensors are getting more attention for automotive 
applications because they are small, lightweight, and power efficient [HB2014]. Due to this relevance, 
MEMS-based lidar sensors are considered in the following. Furthermore, MEMS-based lidar sensors 
are also used for agricultural, archaeological surveys, and crowd analytics [BLI2023]. 
 

4.3.2 Principles of Operation 
MEMS-based lidar sensors consist of a laser and detector module (LDM) and a beam deflection unit 
(MEMS-based mirrors) for beam steering, as shown in Figure 16. The laser source emits laser pulses, 
and the beam deflection unit deflects the beam in different directions to obtain a holistic imaging of 
the environment. The photo detector receives the laser pulse partly reflected from the target’s surface. 
The sensor acquires the round-trip delay time (RTDT) τ that the laser light takes to hit an object and 
return to the detector. With τ, the range R can be calculated as [HPK+2022]: 

𝑅𝑅 =
𝑒𝑒 ⋅ 𝜏𝜏

2
 

where c is the speed of light and the RTDT is denoted by τ. 



 

 

 

Figure 16: Block diagram of MEMS lidar sensor, source: adapted with permission from [PET2022a]. 

 

4.3.3 Characteristics 
Table 2 shows lidar sensor-specific parameters essential for the application. In addition, exemplary 
values of a MEMS-based lidar sensor are assigned to the parameters. 
 

Table 2: Parameters of a MEMS-based lidar lidar sensor [BLI2022] 

Parameter Exemplary Values 
Typical applica�on range 1.5 m ~ 75 m 

Range resolu�on <  1 cm 
Range accuracy <  2 cm 

Maximum number of scanlines 400 
FoV (H x V) 70 ° 𝑥𝑥 30 ° 

Angular resolu�on 0.4 °~ 1 ° (user configurable) 
Frame rate 1 Hz ~50 Hz (user configurable) 

Laser wavelength 905 nm 
 

4.3.4 Artifacts 
Like other environmental perception sensors, including RADAR, camera, and ultrasonic sensors, lidar 
sensors also have strengths and weaknesses. 
  

Strengths of lidar sensors: 
• Range: Lidar sensors can detect objects at long distances, which is important for responding to 

potential hazards or obstacles well in advance. 
• Detection of Multiple Objects: Lidar sensors can simultaneously track and identify multiple 

objects within their detection range, advantageous for complex traffic scenarios. 
• Object detection in Darkness: Unlike camera sensors, a lidar sensor's performance is not affected 

at night. 



• Resolution & Accuracy: Lidar generates instantaneous, dense measurements and can be accurate 
to a centimeter. 

• 3D Mapping: 3D point clouds of the environment generated by the lidar sensors can be used to 
produce 3D maps to interpret the environment. 

Weakness of lidar sensors: 
• Costly: Current lidar sensors available for automotive applications are very costly in comparison 

to RADAR and camera sensors. 
• Sensitivity to Environmental Conditions: The performance can decrease significantly in rain, fog, 

and snow. In addition, the lidar sensor’s performance also degrades in direct sunlight.   
•  Motion Distortion: The fast relative motion between the scanning lidar sensor and objects can 

lead to a distortion of the point cloud. 
• No Color information: Unlike Camera sensors, lidar sensors don’t provide the color information 

of the detected objects. 

4.3.5 Modeling of Lidar Sensors 
Automotive LiDAR sensor models are typically divided into ideal, phenomenological, and physical 
models depending on their modeling approach and covered effects [AHH+2020]. 

Ideal sensor models, also known as “ground truth” (Ground truth provides the simulated objects’ 
actual values, dimensions, position, velocities, orientation, and bounding box) sensor models, use the 
object list provided by the simulation framework in the world coordinate system as an input. The term 
ground truth is borrowed from remote sensing, where it refers to location information for data 
calibration [NKL+2021]. These models’ output is a filtered object list for the sensor specific FoV 
[HHB+2015]. An ideal lidar sensor model does not consider any sensor-related imperfections except 
the FoV and object occlusion. Therefore, these models have low complexity, require less computation 
time, and can test the highly automated driving (HAD) function operation in the early stage of 
development. It should be noted that ideal models, which are described in the literature, are mostly 
generic, and they can fulfill the requirements of different environment perception sensor types, 
including lidar, radar, and camera [SN2018]. The ASAM Open Simulation Interface (OSI) provides the 
osi3::GroundTruth interface for such sensor models.  

Phenomenological lidar sensor models use the object list as an input and apply weather conditions, 
false alarms (positive/negative), detection probabilities, and sensor-related effects, including the FoV 
and a limited detection range. This type of sensor models outputs either detections (point clouds) or 
object lists [HHR+2015].  

 Physical sensor models are based on the physical aspects and can be numerically complex. Hence, 
they usually require a lot of computational power and, thus, might not be real-time capable. The 
subsequent models use the rendering techniques provided by the simulation framework as input and 
generate the detections (point clouds) as an output containing distance, intensity, and timestamp. 
Several rendering techniques generate synthetic lidar sensor detections; ray tracing, ray casting, 
rasterization (z-buffers), and ray path [SLB2017]. 
 

4.3.6 Lidar Sensor Modeling 
Figure 17 depicts the toolchain and the signal processing steps of the proposed lidar model. The sensor 
model considers the scan pattern and complete signal processing steps of Blickfeld Cube 1. As 
mentioned earlier in Section 1, the model itself is built as an OSMP FMU and uses the virtual 
environment of IPG CarMaker. It provides the ray tracing framework with a bidirectional reflectance 
distribution function (BRDF) that considers the direction of the incident ray θ, material surface, and 
color properties [IPS2021]. The lidar FMU model uses the ray tracing module of IPG CarMaker. The 
material properties of the simulated objects, angle-dependent spectral reflectance 𝑅𝑅λ(θ), and 
reflection types, including diffuse, specular, retroreflective, and transmissive, are specified in the 



material library of IPG CarMaker. 
 

 

Figure 17: Co-simulation framework of the lidar FMU model. 

The FMU controller passes the required input configuration to the simulation framework via 
osi3::LidarSensorViewConfiguration. The simulation tool verifies the input configuration and provides 
the ray tracing detections via osi3::LidarSensorView::reflection interface time delay τ and relative 
power 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅) [ASA2022]. 

Afterward, the FMU controller calls the lidar simulation library and passes the ray tracing data for 
further processing. The central component of the simulation library is the simulation controller. It is 
used as the primary interface component to provide interactions with the library, for instance, 
configuring the simulation pipeline, inserting ray tracing data, executing the simulation’s steps, and 
retrieving the results. 

The next block in the pipeline is the link budget module, which calculates the photons over time. The 
task of the detector module is to capture these photons’ arrivals and convert them into an electrical 
current signal 𝑒𝑒𝑑𝑑[𝑒𝑒]. In the proposed lidar model, a silicon photomultipliers (SiPM) as a detector 
[FSB+2022] is implemented. Still, it can also support avalanche photodiode (APD) and single-photon 
avalanche diode (SPAD) detector models. 

The third block in the pipeline is the circuit module. Its task is to amplify and convert the detector’s 
photo current signal 𝑒𝑒𝑑𝑑[𝑒𝑒] to a voltage signal 𝑜𝑜𝑐𝑐[𝑒𝑒] that is processed by the ranging module. 

The last part of the toolchain is the ranging module, which determines the range and intensity of the 
target based on the 𝑜𝑜𝑐𝑐[𝑒𝑒] received from the analog circuit for every reflected scan point. Finally, the 
effect engine (FX engine) is a series of interfaces that interacts with environmental or sensor-related 
effects and the blocks of the simulation pipeline. These interactions can involve, for example, the 
consideration of thermal noise in electrical components, signal attenuation due to weather 
phenomena, and backscattering. It should be noted that this paper only considers the environmental 
condition sunlight effect. 

This section will cover a detailed description of scan patterns and lidar simulation library components. 

A detailed description of the individual modules and covered effects of the sensor model can be found 
in [HPK+2022, HCP+2023, HPK+2023]. 
 



4.3.7 Model Validation 
 

The lidar sensor model developed by Kempten University of Applied Sciences and the Blickfeld GmbH 
in the VIVALDI project [HPK+2022] is validated on the time domain, point cloud, and object recognition 
level. The sensor model contains the complete signal processing toolchain of the Blickfeld Cube 1 lidar 
sensor and the sensor-specific imperfections, including optical losses, inherent detector effects, effects 
generated by the electrical amplification, and noise produced by sunlight. In addition, the effect of rain 
and fog is also modeled in it. A detailed description of the sensor model validation can be found in 
[HPK+2022]. In order to validate the model at all three levels, both static and dynamic tests were 
performed. 

 Static Lab Tests: 

The static tests are performed in the lab. Therefore, a 10% diffuse reflective Lambertian plate is placed 
at different distances in front of the sensor. 

To verify the model on the time domain level, only single-point scattering is considered from the 
surface of the target.  

To validate the sensor models at point cloud level, three metrics are defined. A detailed reasoning for 
choosing these metrics can be found in [HPK+2022].  

• Number of received points 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 from the surface of the simulated and real objects of interest 
(OOI). 

• Comparison between the mean intensity 𝐼𝐼𝑚𝑚𝑟𝑟𝑎𝑎𝑝𝑝 values of received reflections from the surface of 
the simulated and real targets. 

• Distance error 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟  of point clouds obtained from the real and virtual objects should not be 
more than the range accuracy of the real sensor, which is 2 cm in this case. 

  

Dynamic Proving Ground Tests: 

Dynamic test drives were conducted at the Jtown proving ground. Therefore, it should be noted that 
the daylight intensity is recorded and modeled in the simulation environment too. The simulated and 
real test drive results have been compared frame by frame to validate the environment and sensor 
modeling for the defined metrics.  

To validate the sensor model at the object recognition level we trained a state-of-the-art deep learning 
based PointPillars network [LVC+2017] for object detection using simulated lidar data. The model has 
been tested with real and simulated data of the vehicle target. The average orientation similarity (AOS) 
metric [GLU2012] has been used to find the correlation between the object’s 3D ground truth 
orientation and the object’s estimated 3D orientation by the object detection algorithm. 

A detailed description of the scenarios used for the validation as well as an overview of the results 
obtained can be found at [HCP+2023, HPK+2023].  



4.4  Camera 
The camera sensor is expected to be one of the major components of an advanced driver assistance 
system (ADAS) or automated driving system. Environment recognition by a camera sensor is essential 
since the camera provides a reliable full scene understanding and furthermore it gives information’s 
lidar, radar and ultrasonic sensors are not capable to provide like detection of traffic-lights, -signs and 
emergency signals. Cameras can furthermore provide visual information to the driver about the car 
surrounding e.g., during parking scenarios. The number and characteristics of camera systems in a car 
can vary, depending on the use case. In general, we distinguish between near range cameras which 
usually have a wide field of view (i.e., fisheye optics) for rear or surround view applications and front 
view cameras with a high range and small field of view (tele otics) for i.e., emergency braking functions. 
The most significant differences are the field of view and the resolution. 
 

4.4.1 Principles of Operation 
Camera sensors are optical and passive sensors, which means that the incoming light is focused by the 
camera lens system and hits the electronic image sensor-unit which is located at the focus point of the 
lens.  

The light spectrum “visible” to a camera is mostly bounded below by material properties and bounded 
above by an IR-cut-off-filter which yields a spectrum-range of approx. 380nm-780nm. The sensor-unit 
consists of light-sensitive photodiodes (pixels) arranged in a two-dimensional array. The number of 
collected photons is then converted to the corresponding number of electrons transferred into a digital 
number by an A/D-Converter.    

Cameras function through a combination of various components (i.e. lenses, filter, lens-housings, and 
physical principles, these include i.e. exposure control, which regulates the amount of light reaching 
the sensor. 

In automotive cameras sampling happens at discrete locations (pixel), at discrete time (capture time), 
with discrete spectral weighting. In the process from analog to digital signals the algorithms of the 
signal processing reduce these sampling- and noise-effects, before detection (perception) algorithms 
are applied to detect objects, like pedestrians. In Figure 18 a simplified video processing chain is 
visualized.

 

Figure 18: A simplified camera processing chain with elements visualized as blocks with rounded corners. The group within 
the processing chain is visualized as dashed rounded blocks and the sensor interfaces are marked as edged blocks  

Summarized, automotive camera systems must deal with unconstrained environments, i.e., a wide 
range of weather, illumination, and temperature conditions. The process of environmental visual data 
acquisition is the result of a complex effect chain, which starts from a light source and ends with the 
final image stored in memory. In this information transfer chain, the signal suffers from a variety of 
intermediate disturbances, thus degradation of the signal quality will always take place to some extent. 
It is important that the system is designed so that enough relevant information about the world is still 
preserved in the chain. 

4.4.2 Artifacts 
Camera sensors have different strengths compared to other sensor modalities as well as weaknesses. 
The characteristic (more precisely the degree of aberrations and distortions) of a camera sensor 



depends on the design requirements and the implemented design.  
Therefore, the following strengths and weaknesses are formulated in a quite general manner:  

Strengths of camera sensors: 
1. Reliable Spatial Resolution: Optical sensors have a high solid angle resolution and the angle 

determination can be carried out horizontally and vertically. It offers the capability to 
distinguish objects with similar distances and relative radial velocities from one another like 
parking cars. 

2. Detail Recognition: Camera sensors are capable of providing detailed information about the 
shape, size, color, or type/class of detected objects. Especially traffic signs and lights and 
emergency signals are detectable and crucial information about the traffic light color, or the 
speed limit can be provided.   

3. Detection of Multiple Objects: Camera sensors can simultaneously track and identify multiple 
objects within their detection range, advantageous for complex traffic scenarios. 

Weaknesses of Camera Sensors: 
1. Sensitive to Lighting Conditions: Without active illumination, cameras have detection limitations 

in low illuminated scenes, i.e. darkness, as well as low contrast scenes, i.e. blinded by the sun.  
2. Limitations at adverse Weather Conditions: Camera sensors cannot reliably operate in adverse 

weather conditions such as rain, snow, or fog since the contrast is limited here.  
3. Not accurate in Speed Measurements: Camera speed estimation is not measured, but derived 

from subsequent position measurements and therefore is inaccurate e.g. compared to radar.  
4. Detection Range is limited: Compared to other sensors, the detection range of cameras is in 

general shorter.  
5. Modulated Light Challenges: If parameters of the camera (i.e. exposure time) and modulated 

LED-light sources do not fit, the LED source could appear to be OFF in the camera (i.e. traffic 
signs and signals, headlights).  

In sum, cameras have advantage over lidar and radar concerning resolution, color detection and detail 
detections, but perform worse than radar and lidar in terms of weather robustness, 3D shape detection 
and the measurement of relative speed. Furthermore, they are limited in darkness or if straylight 
happens.  

The most relevant camera properties to the advanced driver assistance systems were systematically 
derived and confirmed also in expert interviews: the so-called lens impairments, like distortion, 
vignetting, and blur, and the image impairments, like noise and rolling shutter. There is a vast literature 
on this topic and therefore reference is made to the white paper - IEEE P2020 Automotive Imaging, 
IEEE, 2018 (https://www.image-engineering.de/content/library/white_paper/P2020_white_ 
paper.pdf).  

Furthermore, detailed artifacts as well as a hierarchical structuring with information about the 
interaction of different effects can be found on Github at PerCollECT CameraCopse 
https://percollect.github.io/CameraCopse/. 

Ultimately, the uncertainty of a camera's object recognition determines not only the camera properties 
and their phenomena but also the algorithms used. What is ultimately relevant for vehicle guidance is 
how accurately the objects can be reproduced in a vehicle movement and under different 
environmental conditions. Figure 19 shows an example of the measurement of the road curvature of 
two current vehicles (SUV and sedan) with two different camera systems under different weather 
conditions. The measurements were taken over several weeks as part of the SensIndex project, funded 
by the Bavarian state as part of a large-scale test subject study. The advantage there was that the study 
was carried out on digitized ground truth routes and the weather conditions were very different. The 
sequence of the test drives was clearly defined and could always be reproduced. This revealed major 
differences in sensor behavior. The comparability of several journeys is a key challenge due to different 
speeds. The analysis based on the digital ground truth maps enables the measurement data to be 
synchronized locally. The location-based analysis enables an objective comparison of different sensors. 

https://www.image-engineering.de/content/library/white_paper/P2020_white_%20paper.pdf
https://www.image-engineering.de/content/library/white_paper/P2020_white_%20paper.pdf
https://percollect.github.io/CameraCopse/


 

 

Figure 19: Camera performance characteristics based on Ground Truth under different weather conditions 

 

Figure 19 shows the camera lane curvature compared to ground truth data in different weather 
conditions. As ground truth data, digital maps of the B19 Kempten - Immenstadt were generated as a 
look-up table with an absolute accuracy of >5cm [SHL+2018;KHM+2019] in a curved reference grid as 
curve reference objects (CRO) [KHM+2019]. The contents of the digital maps include lane markings, 
marking widths, lane gradients, bends, crash barriers, guide posts and signs. The camera failures (drop-
offs) due to environmental conditions such as rain, snow, sun and driving situations such as drop 
shadows under bridges/short tunnels and the accuracy of the curvature reproduction under different 
conditions can be recognized very well. Local curvature errors of up to 50% could be detected, which 
limit stable and good track guidance [HFS+2019]. This allows, among other things, the performance 
differences between the various cameras to be illustrated. As part of SensIndex, a method was 
developed at Kempten University of Applied Sciences to characterize sensor performance under real 
conditions and compare it with a reference condition (degradation). It was also noticeable that the 
sensor performance interacts with the vehicle and its movements. The same camera, for example in 
an SUV or sports car, can exhibit different performance. Figure 19 illustrates the large gap between 
the desired sensor behavior and the actual behavior of cameras, which can lead to reduced availability 
and reduced functional quality.  
 

Research Needs: 

This motivates the development of camera technology and fusion technologies in particular (chapter 
5). Fusion with digital maps, for example, can help to bridge drop-offs and minimize curvature errors. 
Fusion with other sensors such as Lidar can also help to identify distance-to-line more robustly. Overall, 
this can significantly increase system availability and functional quality. For vehicle and system 
development, this results in the great need to be able to virtually simulate the sensor fusion based on 
scenarios in the early phase. This applies at vehicle level (system), at the level of the environment 



simulation (sub-system) and at sensor level (component level). This requires highly accurate and 
detailed digital ground truth maps for the road, road infrastructure and the surrounding area in the 
simulation environment (see chapter 4.1.3. and 4.5.). This requires highly accurate and detailed digital 
ground maps for the road, the road infrastructure and the environment in the simulation environment. 
These are not currently available in the necessary and desired level of detail, accuracy, time and cost 
for practical use. In addition, the uncertainties are not known. 
 

4.4.3 Characterization of Video cameras 
A detailed presentation of the camera impairments and their modeling is given in the doctoral thesis 
“Automotive Camera Modeling and Integration with Standardized Interfaces”, Saad, K., 2019. The 
relevant impairments are understood and their models can be abstracted mathematically, mainly with 
matrix-vector products. These matrix-vector multiplications also determine the run time behavior of 
the models. 
 

  

Figure 20: The used ca,era IDS3280-CP (right) and an architecture of the corresponding algorithm (left) 

 

4.4.4 Models of video cameras 
In literature, e.g. [DS2019], video camera models are classified into three different categories ideal, 
phenomenological and physical sensor models. Standardization for sensor models is still missing. On 
the one hand, the models for video cameras must consider the relevant impairments with regard to 
the usability of the processing for ADAS as well as the resources storage space and computing time. 
Another aspect that should not be neglected is standardized models that ensure (comparable) use in 
different simulation environments.  

Some prototypical implementations of camera sensor models based on OSI and FMU were already 
done in the publicly funded projects PEGASUS and SetLevel.  

4.4.5 Model validation 
There are essentially two different methods to validate the models: either it is proven that the errors 
of the corresponding exposure values of the real and simulated images for the relevant class of possible 
images for the driving function to be verified differ negligibly, or it is proven that for the further 
processing in the fusion and afterward in the driving function the relevant image information, such as 
features or object lists, lead to the same reactions of the driving function. This is generally not easy 
and therefore individual effects are tried to be studied in detail, which is not easy because images with 
real cameras always have all the effects attached. Replicating the behavior of a camera depends 
primarily on the modeled ray tracer. However, a good introduction to the literature for the verification 
and validation of camera behavior models can be found in the papers [ED2022], [ESN2022a] and 
[ESN2022b]. In [GMS+2021] the focus is laid on efficient and realistic perception sensor models.  



However, the impact of the camera behavior is studied in the VIVALDI project in the case study Campus 
University Sciences Kempten (TE building). The camera is put on the position like in the case study 3 
with Ground Truth [598504.25 5285509.12 701.374] in UTM. This time the camera faces towards the 
building TE. 
  
  

 

Figure 21 Position of the camera (red point) and the Campus University of Applied Sciences Kempten TE building on the left 
side (left figure). Measuring the camera height (middle figure) and taking images of the building TE in the campus courtyard 

(right figure) 

  

Features of the SensorData image of the real camera are compared with the SensorData image of the 
simulated camera with camera behavior model impairments. 
  

 

Figure 22: Sensor Data of the real camera of the building TE (left). SensorView of the simulated environment of the building 
TE (right). 

 

The SensorView image of  the environment is based on a lidar scan of the campus. The SensorData of 
the image is generated from the SensorView of the camera. Finally, some features in the SensorData 
image are automatically identified. 
 



   

Figure 23: SensorData of the simulated environment of the building TE (left). Features of the SensorData of the simulated 
environment of the building TE (right). 

 

The camera position is then calculated with the corresponding Ground Truth data of the city of 
Kempten database. Finally, four positions can be compared: the Ground Truth position, the estimation 
on the basis of the IDS3280 image, the estimation on the SensorView image and the SensorData image 
of the simulated environment are calculated. Then, the Euclidean Distance between GroundTruth on 
the one side and IDS3280 image, SensorView image and the SensorData image on the other hand are 
calculated for each coordinate direction. 

 

Figure 24: Measured and calculated coordinates of the camera position (left). Differences in the Euclidian distance in x-, y- 
and z-direction (right). 

  

In the very first application of the localization method, the impact of the camera behavior model 
reduces the error in x from 4.94 m to 1.19 m and in z from 12,062 m to 2.141 m whereas the error in 
y increases from 0.21 m to 1.09 m. The error in respect to the taken picture is comparable small with 
in x: 0.05 m, in y: 0.08 m and z: 0.194 m. These results need to be analyzed in more details. 

On the bases of these results, the research goal of the project VIVALDI “how accurate is accurate 
enough” of 5 cm seems possible. However, there are still analyzes to be made in the future. The results 
are promising and further case studies are therefore recommended. 
 
  



 

4.5 Digital Maps 
As additional virtual sensor information, digital maps offer immense potential in the perception of the 
environment and in the precise localization of vehicles and traffic objects. Sensor fusion with digital 
maps enables a preview with regard to the static road and road infrastructure and can help to bridge 
sensor drop-offs and minimize errors. Overall, this can significantly increase system availability and 
functional quality. In particular, static objects such as roadways, road markings, footpaths and cycle 
paths, signs, traffic lights, buildings and vegetation and much more can be labeled and stored here in 
geo-referenced form. If an environment sensor detects certain static objects on the map, the vehicle 
can use these landmarks to locate itself and other road users. However, this requires high-resolution 
maps (HD maps) and, above all, accurate maps in order to reliably locate your own vehicle and other 
road users. Only then can the scenario be interpreted reliably. For example, objects must not be 
incorrectly located in the adjacent or even opposite lane. It is therefore very important to be aware of 
the uncertainty of this source of information and to take it into account when recognizing and 
interpreting the environment.  
 

4.5.1 Principles of Operation 
Digital maps, also called digital cartography, is the technology of measuring, creating and using maps 
for different applications, in this context for ADAS/AD functions. The primary challenges of digital maps 
is the accurate measuring and creation, including the accurate representations of a particular geo-
referenced areas and objects such as roadways, road markings, footpaths and cycle paths, signs, traffic 
lights, buildings etc. Digital maps are usually measured at great expense using measuring vehicles or 
satellites based on various measuring principles such as camera, lidar or radar and are usually part of 
the geographical information system (GIS). There are a wide variety of digital maps such as 
topographical maps, building maps from the cartographic office, road maps, hiking maps etc. for many 
different applications. These are also based on positioning using GPS (Global Positioning System). From 
this, digital maps are generated for a wide variety of target applications, which are based on very 
different requirements such as content, resolution, and accuracy. 

Digital maps are offered by various suppliers for automotive applications and have been used in 
navigation systems for a long time. For example, the online geodata service HERE was acquired in 2015 
by the three German car manufacturers Audi, BMW and Mercedes-Benz Group (previously Nokia, 
Windows). HERE Technologies is now one of the world's leading location data and technology 
platforms and also offers digital HD maps as live data and addresses applications in the context of 
ADAS/AD. 
 

4.5.2 Artifacts 
Digital maps have different strengths compared to other sensor modalities as well as weaknesses. The 
characteristic of a digital map depends on the application requirements and the measurement and 
labeling technologies. When measuring digital maps, the basic problem is incorrect position 
measurement, e.g., using satellite-based GPS or other global positioning systems. Digital maps are 
usually measured using special measuring vehicles and device. Differential GPS supports IMUs (Inertial 
measurement Units) to measure the vehicle motion (3x translation, 3x rotation). This allows the 
transformation of sensor data such as point clouds from a lidar to be georeferenced. The problem here 
is obvious. The position measurements are subject to significant errors due to limited satellite coverage 
such as bridges and urban canyons. While with good satellite coverage an accuracy of +/. 2 cm can be 
achieved, the error increases to 30 - 130 cm even with moderate satellite coverage. The poor satellite 
coverage leads additional to position drifts for IMUs. Absolute and relative errors are passed on in the 
measurement sequence, which can lead to significant overall errors. The transformation of the sensor 
data is equally affected. This leads to significant uncertainties in the digital maps. Multi-path 



propagation of the GPS, sensor latency times, synchronization errors of the sensors and much more 
also influence the absolute and relative error of the map. This can lead to simple offset errors, but also 
to distortion errors over longer distances. All digital cards for the different applications (chapter 1.5.1.) 
are more or less affected by these errors and are therefore difficult to bring together. 

As part of a research project, reference measurements of landmarks in urban areas at numerous 
intersections were carried out for validation. Due to the development, very different and challenging 
measurement conditions arose. Figure 18 shows a GeoTIFF of Durlacher Allee in Karlsruhe. Static 
reference measurements of landmarks such as traffic lights and signs are drawn here. Here we can see 
clear position deviations and errors in the GeoTIFF. GeoTiffs also have corresponding offset and 
distortion errors in their measurement chain. These are approx. 30 - 100 cm in this sample. 
 

 
 

Figure 25: Precise static reference measurements of landmarks as ground truth in comparison to geo-referenced images 
(GeoTIFF)  

Therefore, the following strengths and weaknesses are formulated in a quite general manner: 
 

Strengths of digital maps: 
1. Absolute reference: Maps represent the absolute static reference that can be checked at any 

time and to which other measurements can be based. 
2. Defined Resolution: Digital maps usually have a clearly defined resolution/grid. This helps with 

location. 
3. Defined Object range: Digital maps enable a clearly defined range of objects. 

Weaknesses of digital maps: 
1. Error sensitivity: Digital maps are prone to errors due to error propagation. 
2. Accuracy difficult to prove: Digital maps are very difficult to check for accuracy and uncertainty 

due to the measurement problems. There are no suitable procedures here. 
3. Update capability: Digital maps are difficult to keep up to date. Structural changes cause them to 

lose validity or accuracy. 
4. Fixed Resolution: The fixed resolution of digital maps for different applications makes multiple 

use difficult. 

If there are errors in the digital map, it is difficult to accurately match measured scenarios such as 
positions and movements of various traffic objects.  
 



 

Figure 26: Matching of digital map (static ground truth) with measured scenario (dynamic ground truth) 

4.5.3 Environment Simulation based on Digital Maps 
Digital maps can be converted into an environmental simulation. There are various standards for this, 
such as OpenDrive or OpenCRG (Curved Reference Grid), but also numerous proprietary formats from 
various simulation environments such as IPG CarMaker Road5 etc. All formats have certain restrictions 
and were originally developed for other applications. For example, OpenDRIVE was developed as a 
road format for building routes in driving simulators. Although extensive routes and environments can 
be created in OpenDRIVE, many parameters such as track width, road markings, road inclination and 
curvature are only valid for entire sequences and can lead to limitations in accuracy. OpenCRG was 
developed as surface models for the tire-road system to model road excitations. OpenDRIVE cannot 
display road networks today. What remains is that the environmental models for sensor simulation 
are incomplete regarding material properties and standardized 3D assets. 
 

4.5.4 Research needs 
The limitations of digital maps are obvious. On the one hand, these are created for very different 
applications and associated requirements. Resolutions, contents and absolute accuracies vary 
considerably. On the other hand, the maps are not suitable as an environment model in the sense of 
your ground truth. This requires special, very complex track/route measurements and their transfer 
into the simulation. Such projects, with purely geometric representation, usually take more than 12 
months, even for 20-30 km. The material properties from Chapter 1.3.1 are not even taken into 
account, here. This creates enormous barriers for the development. 
The following research questions arise here:  

• Which reference/ground truth can be used to determine and correct the uncertainties in 
measurements and digital maps? 

• How can different sources of digital maps re-used and be brought together as precisely as possible 
to form a ground truth environment model? 

• How can the accuracy of the environment model be controlled and optimized? 
• How can the process of creating an environment model be automated and significantly 

accelerated from > 12 months up to few days? 
• How can you create 3D objects (meshing) from measured point clouds as automatically as 

possible? 
• How can you easily and quickly add the material properties that are important for the sensor 

models to the environmental models, if possible in an automated way? 
• What can a standardized data and exchange format for the objects and environment look like? 



5. Sensor Fusion and Classification 
5.1 Introduction  
This Chapter addresses the fundamental challenge of bounding the uncertainty of perception of 
automated vehicles. To this end we propose to inductively derive what we call “guarantees for 
bounding uncertainty” along the structure of the perception chain. This calls for major research in 
providing characterizations of all elements of the perception chain to provide local quality guarantees 
of perception, which justifies to designate such components as “sufficiently perfect components of the 
perception chain”. This seemingly contradictory term is used to on one side acknowledge the fact, that 
e.g., all sensors suffer from severe degradation in adverse weather conditions, but on the other hand, 
they come with a characterization of such adverse conditions, and provide, possibly weak, quality 
guarantees in non-adverse conditions. The key role of sensor fusion is to alleviate weak or even lacking 
quality guarantees of one sensor by stronger guarantees for bounding uncertainty of other sensors. 
While there is a rich literature and strong body of industrial experience for building sensor fusion 
systems, we propose the following research challenges: 

1. How to provide quality guarantees for all types of sensors, in spite of  
a. Intrinsic uncertainties, resulting from the structure of the sensor and its integration in the 

signal chains, such as distortions, disturbance sensitivity 
b. Extrinsic uncertainties that come from the external conditions in which the sensor is 

embedded during operation, such as accuracy of attributes such as velocity, locality, … 
which are key for assessing confidence and accuracy of measurements 

c. Uncertainties stemming from employed measurement techniques, such as multipath 
phenomena, reflection phenomena, occlusion, … 

2. How to provide quality guarantees for AI-based classification components 
3. How to derive strongest quality guarantees when fusing such information 
4. How to dynamically adjust the structure of the perception allowing to exploit additional fusion 

steps until uncertainty is bounded to a level allowing safe execution of selected maneuvers. 

This chapter is structured as follows. Section 5.2. summarizes the state of the art in sensor fusion, 
based on the survey [Fay et al 2020]. Section 5.3 addresses the fundamental challenge of deriving 
strategies for safe manoeuvre execution in the presence of possibly partial or imprecise or even 
incorrect beliefs about the environment of the ego system, and derives from this a meta requirement 
on the quality of perception of the perception chain. Section 5.4. proposes a functional architecture 
for dynamically adjusting the quality of perception to the quality requirements of what we call relevant 
objects in the environment of the ego system, if this is at all possible. Together with the monitoring 
components on adverse conditions anchored in this architecture, this allows to determine if the 
required quality level has been achieved, or else degrade to emergency rescue manoeuvres. Section 
5.5. proposes research directions for providing quality guarantees for AI-based classification 
components. Section 5.6 proposes a mechanism for propagating quality assurances through sensor 
fusion components based on Dempster Shafer Theory, following the recommendation of [Mu et al 
2010].  

 

5.2 State of the Art 
It is well known and state of industrial practice to use sensor fusion to mitigate weakness or limitations 
of sensors for tasks which are fundamentally required in SAE levels 2-5 [SAE2021] and in general in 
highly automated systems. We refer to the excellent survey [FJG+2020] for a discussion of the state of 
the art. The following tables taken from [FJG2020] summarizes key use cases for sensor fusion as well 
as classical as well as AI-based sensor fusion algorithms. 

 



 

 
Table 1 Summary of AV applications, limitations of sensors, and advantages of sensor fusion, [FJH+2020]. For 
references listed in this table, please refer to Annex 1. 

 

Table 2 below summarizes “classical” algorithms for sensor fusion, as contrasted with deep-learning 
based approaches surveyed in their Table 3. 
 



 

 

Table 2 A comparison between traditional sensor fusion algorithms, their advantages, disadvantages, 
applications, and fusion level, taken from [FJG+2020].  For references listed in this table, please refer to Annex 1. 

DL Algorithm Description Applications 

Convolutional Neural Network 
(CNN) 

A feedforward network with convolution 
layers and pooling layers. CNN is very 
powerful in finding the relationship 
among image pixels. 

Computer Vision [82–84];  
Speech Recognition [85] 

Recurrent Neural Network 
(RNN) 

A class of feedback networks that uses 
previous output samples to predict new 
data sample. RNN deals with sequential 
data; both the input and output can be a 
sequence of data. 

Image Caption [86];  
Data Forecasting [87]; 

Natural Language Processing [88] 

Deep Belief Net (DBN) 

Multilayer generative energy-based 
model with a visible input layer and 
multiple hidden layers. DBN assigns 
probabilistic values to its model 
parameters. 

Collaborative Filtering [89]; 
Handwritten Character  

Recognition [90]; 
 acoustic modeling [91] 

Autoencoders (AE) 

A class of neural network that tends to 
learn the representation of data in an 
unsupervised manner. AE consists of an 
encoder and decoder, and it can be 
trained through minimizing the 
differences between the input and 
output. 

Dimensionality Reduction[92]; 
Image Retrieval [93]; 
Data Denoising [94] 

Transformer 

A class of neural networks that consider 
contextual relationships of the input data 
using the self-attention mechanism. 
Transformers originate from sequence 
processing and were recently adopted by 
computer vision applications. 

Computer Vision;  
Natural Language Processing;  

Audio-Visual Speech Recognition  

Table 3 A summary of deep learning algorithms, their main properties, and applications, taken from [FJG+2020] 
and extended. For references listed in this table, see Annex 1 



5.3 Safe Maneuver Execution in the presence of possibly 
incomplete of incorrect beliefs 

The selection of manoeuvres and, in general, selection of strategies of an HAV is inherently restricted 
by the imperfections of the “Lagebild” computed by the perception chain. This Lagebild, often also 
referred to as the world model of the HAV, is bound to deviate from what in the AI community is called 
ground truth. Problems causing the withdrawal of the license to run robotaxis in the city of San 
Franciso30, or as leading to the recall of more than 2 million Tesla´s31 and as evidenced by the related 
accident analysis carried out by the NHTSA give ample evidence of situations where the perception 
chain may miss or incorrectly classify objects in the environment of the ego system. To stress this 
difference, we referred to in [DHS+2024] to the Lagebild as Descriptive Beliefs of the ego system, which 
in general will differ from the ground truth of the state of the environment of the HAV. This entails, 
that there is a constant need for monitoring the plausibility of the computed Lagebild, the need for 
enabling belief revision if new perceptions are inconsistent with previous observation, as well as the 
need to regularly adapt components of the perception chain by learning from mis-classifications and 
mis-observation, and adapting sensor- and/or classifier characterizations by addressing the causes of 
misinterpretation or inaccuracies, requiring over-the-air update capabilities. 

We present in this section a meta-requirement on the perception chain, which, when established by 
the components of the perception chain through propagating robustness guarantees, enforces that 
what the ego car believes to be true about its environment, and the actual ground truth, rarely differ 
for all aspects of the environment which are relevant for ensuring the safety of the ego vehicle. The 
vague term “rarely” is given a precise meaning in the formal definition of this meta-requirement on 
the quality of the perception chain given below. The term “relevant” is also given a more precise 
meaning below; intuitively, an object in the environment of HAV is relevant if missing or mis-qualifying 
this object or its attributes could lead to accidents. Our meta-requirement on the perception chain 
demands that the perception of “relevant” environmental objects errs with rate at most r.  This rate 
of misperception can then be used in the system hazards analysis to quantify the resulting risks of such 
misperceptions, taking into account the hazard severity. 

Within the scope of this document, we only sketch the underlying formal semantics necessary for 
giving meaning to this formal requirement specification. We refer the reader to [DHS+2024] for a 
formal definition of the underlying transition system semantics. 

Our mathematical model uses, as e.g., [GAL2015], labelled occupancy grids for fusion of sensor data 
from radar, lidar, video, etc, and as interface to learning algorithms-based components for classifying 
objects in the environment of the ego-vehicle according to a partially ordered ontology. We assume 
that each object in this ontology comes with class definitions characterizing both static and – if 
applicable – dynamic aspects, such as ODD dependent models for typical traffic behaviour (e.g., 
characterizing variations in lateral and longitudinal acceleration of vehicles in a neighbouring highway 
lane, or of pedestrians in an urban pedestrian crossing). Such knowledge is exploited in prediction 
engines for online prediction of the evolving traffic. These also give formal meaning to the vague term 
of “relevant” environmental objects: the prediction engine provides feedback regarding criticality of 
queries for individual fields in the occupancy grid: errors arising from misperceptions of objects only 
count, if they relate to such criticality.  

For each sensor our approach requires the capability to identify harsh environmental conditions 

                                                           
30 ORDER OF SUSPENSION of October 24, 2023: The Autonomous Vehicle Tes�ng Permit-Driverless Vehicles issued to Cruise LLC is hereby 
suspended immediately for viola�ons pursuant to California Vehicle Code 38750 (d)(3). and California Code of Regula�ons (CCR), Title 13, 
Division I. Chapter I, Ar�cle 3.7, Sec�on 227.42 (b)(5) and (c). 
31 New York CNN  — (13.12.2023)  

Tesla is recalling nearly all 2 million of its cars on US roads to limit the use of its Autopilot feature following a two-year 
probe by US safety regulators of roughly 1,000 crashes in which the feature was engaged.  

 



(where no sufficiently tight bounds for risks of misperceptions can be given), and exploits this 
information in mechanisms for sensor fusion. Finally, we propose a “safety net” reducing likelihood of 
misperceptions, in declaring “blindness” for perceptions, where neither the evidence for existence of 
an object nor the evidence for its absence is sufficiently strong: such declaration of “blindness”, if 
sustained over several cycles for relevant objects in the environment of the HAV, should automatically 
induce minimal risk manoeuvres (as does any detected usage of the HAV outside the allowed ODD), or 
require takeover of mission management by an outside agent.  

We assume as given a partially ordered ontology containing all relevant environmental artifacts for 
HAV. Initiatives towards identification of such an ontology are currently part of a number of R&D 
projects on HAV, including PEGASUS and VVM. The ordering relation reflects the degree of precision 
of classification of objects, with ⊥ (read: bottom) representing inconsistency, and T (read: top) 
denoting no knowledge. The ontology (c.f. e.g. [SCH+2021]) contains different kinds of artifacts, e.g., 
relating to weather conditions (rain, snow, …), road configurations (x-lane highway, T-type 
intersection, …), road conditions (dry, icy, …), roadside infrastructure (traffic signs, traffic lights, …), 
traffic participants (car, truck, pedestrians, animals, …), and surroundings (trees, buildings, …). Objects 
in different categories form separate sublattices, which are turned into a complete lattice by adding a 
new top element, meaning that the type of this object is completely unknown. 

With each object o in the ontology, we assume as given a specification of its HAV-related aspects 
through a class definition cl(o). For artifacts of type road configurations, this includes a specification of 
all geometric aspects including slope, number of lanes, width of lanes, etc. Road configurations are 
built from segments of a parametric length. An operational design domain (ODD) is defined by 
constraints on types of road-configurations, and constraints on prevailing environmental conditions 
and road conditions.  

For each object veh of type vehicle, attributes of cl(veh) include the type of an instance of class road 
configuration, on which the vehicle is currently located, as well as its position. Moreover, each vehicle 
maintains its beliefs about its environment in appropriately typed attributes. For example, a car, ego, 
driving on a country road may believe the road surface is dry, that there is an obstacle in 250 m distance 
ahead blocking the lane, and that some vehicle of unknown type is approaching on the opposite lane. 
Importantly, cl(veh) contains as well a characterization of ODD-dependent dynamics of veh. We 
assume that these are given by probabilistic hybrid automata (PHA, see e.g., [SPR2000] and extensions 
thereof such as [022]), where mode changes are triggered based on believed changes of road 
configurations, weather conditions, road conditions, and observations of surrounding traffic and 
roadside infrastructure,  

A key point to be exploited is that behavioural models are increasingly unconstrained along the 
generalization hierarchy: e.g., for class vehicle, the associated probabilistic hybrid automaton is 
constructed from those of the next level of specialization by introducing a new start state, branching 
non-deterministically into the entry states of the PHA of cars, two-wheelers, trucks, emergency 
vehicles, etc. Similarly, we assume such models for pedestrians, animals, obstacles etc. Based on this, 
we can define a mathematical model of traffic evolution from the perspective of a given ego-vehicle:  

We define the electronic horizon of the ego vehicle to be the best-case range of perception of its on-
board sensory system, and for simplicity of exposition assume this to be given by a rectangle aligned 
to the current pose of the ego vehicle centred at the geometric centre of the ego vehicle. The 
mathematical model is an infinite-state transition system, whose state space is constructed as follows: 
It contains for each point in time t all instances of road segments extending from the instance on which 
the ego car is currently positioned, completely covering its electronic horizon. For each of these road 
segments, it contains for time t position and speed of all vehicles on the road segment, as well as road- 
and weather- conditions, positions of pedestrians, animals, obstacles, etc.  

The (dense time) transition relation of the mathematical model is determined by following a driving 
strategy based on ego’s beliefs, where the environmental constraints are instantiated randomly 
according to the ODD and the dynamic models associated with other traffic participants are 



considered.  

We refrain for space reasons from giving the formal definitions (see [DHS+2024]), and refer to this 
transition system by TS(ego). A state of TS(ego) is given by a valuation of all its observables. A run of 
TS(ego) defines for each observable its evolution over time, thus including trajectories of all vehicles, 
pedestrians, animals, obstacles within ego’s electronic horizon, including the evolution of the beliefs 
of the ego vehicle, and the evolution of its perceived road segments. We call RUNS(TS(ego)) the set of 
all runs of TS(ego).  

We can now formalize the meta requirement for the quality of the perception chain, up to the (to be 
defined) defined notion of relevance, in a probabilistic linear time temporal logic, with observables 
defined by valuations of all attributes of all instances of classes within the electronic horizon of ego, 
over a typed first-order signature induced by the types of attributes in the ontology. Ideally, for each 
point in time, the ground truth of all relevant objects in ego’s electronic horizon, in particular position 
and speed of surrounding traffic participants, road- and weather conditions, coincide exactly with ego’s 
beliefs about these objects. We must relax this unachievable ideal by considering standard 
measurement errors, and allowing classifications to be vague, as long as they are correct with respect 
to the ordering relation in the ontology, i.e., the ground truth classification is a specialization of the 
believed classification. While mis-classifications and misperceptions will occur, we want these to be 
bounded by a given probability r. We assume for each object o existence of a metric do to measure the 
distance between ground truth and beliefs of o, and an instant-dependant safe level of discrepancy 
between ground-truth and beliefs of o δo. We assume a maximal time period ∆ sufficient to take safe 
manoeuvre decisions for the ego vehicle. We want the discrepancy between beliefs and ground truth 
to be bounded by δo , up to a probability of at most  r  that this requirement is violated. This leads to 
the following formal requirement on the confidence of perception: 

 

 
 

 

 

Equation 1 Meta requirement for quality of the perception chain 

There is a recursive dependency of the notion of relevance in the above formula on the capability of 
the perception chain to meet this meta requirement: assuming that the world model (or: “Lagebild”) 
computed by the perception chain meets this meta-requirement, then this will be input to the 
prediction engine to compute the likely evolution of the Lagebild over time, in order to determine the 
next maneuver m to be executed by the ego system in order to meet its goals, notably including safety. 
This prediction highly depends on the correct classification of the objects in the ego-system’s 
environment, as these determine the associated model of their expected dynamics in the current 
scenario. The prediction engine will compute guards pre(m) over the signature determined by the 
ontology for maneuver m to be safe, annotated by requirements on level of confidence on existence 
of objects and classification of objects as well as quantification of guaranteed maximal measurement 
uncertainty, for each relevant maneuver m in the current Lagebild, across the ODD. A perception of an 
object o in the environment is relevant at time t, only if it occurs in the precondition of one of the 
maneuvers proposed by the prediction engine at time t. 

We propose a uniform quality measure for different type of sensor systems by assessing their capability 
to detect all relevant objects in what is often called the occupancy grid enclosing the ego vehicle. We 
take a suitable 3d extension of the electronic horizon of the ego vehicle, assume a sufficiently finely 
grained, not necessarily homogeneous partitioning of this 3d space, and refer to this as occupancy 
grid(ego). We view sensors as labelling partitions of the occupancy grid, providing information about 
whether a given sensor has identified some object in this grid partition, depending on sensor type filled 
with additional information such as speed (for radar), temperature (for infrared), gray-scale 



distribution of pixels for video cameras, typically as confidence levels, e.g. regarding the likelihood of 
some object being located in this grid partition. 

We provide a formal quality requirement on sensors by adapting the safe perception requirement in 
Equation 1. Specifically, for a given position pos of sensor s on vehicle ego, let us denote by 
visible(s,pos) the coherent subspace of the occupancy grid that is observable by sensor s when 
mounted at this position. Then for any relevant object o, and any property label(o) discernable by s in 
this position, we would want the sensor s to almost always, up to some bounded risk rs, correctly label 
the grid field with label(o) at time t, when o is at a visible grid partition in ground truth, as determined 
by the state of TS(ego)32 at that point in time: 

 

Equation 2 Quality requirement on sensor components 

In this formula, we interpret the predicate visible(s,pos) dynamically, providing for subspaces of the 
occupancy grid to be temporarily blocked through artifacts such as other vehicles, or buildings, etc. 
Moreover, since phenomena such as glare, fog, heavy rain etc. will have strong negative impact on 
achieving a sufficiently precise distance between belief and ground truth, we propose to characterize 
for each sensor what we call adverse conditions. Only by using advanced sensor systems (such as radar) 
capable of identifying most ghost objects, and explicating adverse conditions, can we obtain a 
sufficiently tight bound on the probability of incorrect labelling of the occupancy grid, which then can 
enter a hazard analysis to determine the induced risks of such a misperception. The downside is the 
need to then also identify such adverse conditions reliably: In this paper, we integrate such adverse 
conditions in our ontology, and then use the full power of the perception chain to learn sufficiently 
reliable classifications of adverse conditions, which can then be integrated as monitors for on-line 
checking. As discussed in Section 4, we propose to use learning techniques from field observations to 
characterize adverse conditions for each sensor s and to derive such quality guarantees. We now 
weaken the formula of Equation 2 by weakening the criteria for sufficient precision of beliefs in that 
no promises regarding precision are made when adverse conditions ad occur: 

 

Equation 3 Quality criteria for sensor components with characterization of adverse conditions 

Level 4 and 5 HAV must guarantee by construction what we call sensor completeness with maximal 
error probability  r: for all runs of RUNS(TS(ego)), there exists a “sufficiently dense” sequence of time 
instances (tj ) j ∈ N s.t. for all tj and all relevant fields p of the occupancy grid, there must at least be one 
positioned sensor operating in non-adverse conditions, such that p is visible for this sensor, and the 
probability of misperception by this sensor is smaller than r, unless there are multiple positioned 
sensors all operating in non-adverse conditions, which ideally are stochastically independent under 
such conditions; in this case the products of their error probabilities must be smaller than r. The term 
“sufficiently dense” depends on the current ODD. We note that this definition is in fact recursive: 
Relevance depends on the set of actions we are considering possible, which in turn bring us into new 
situations, where the same applies. Informedness deficits can thus be resolved by more sensors, which 
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in turn lead to more permissible actions and consequentially to more possible follow-up situations 
increasing the relevance set and calling for informedness, or by confining the number of actions and 
thereby the relevance set now and in the future. 

For each type of output of a sensor, the probabilistic guarantees given under non-adverse conditions 
and known levels of controllable disturbances of the ego vehicle will include for each type of object of 
the representation at that sensor output 

• a quantification of existential uncertainty, 
• a quantification of the confidence in the categorization of the type of object, if applicable, 
• a quantification of the maximal degree or the variance of imprecision of physical attributes of 

such artefacts observable by this particular sensor system at this particular interface. 

for environments which meet specified non-adverse conditions and ODD specification. 

We require all input data to be time-stamped and all output data to be labeled by the time stamps of 
all processed input data. Quality statements refer to such time stamps, and thus make guarantees 
about the perception of the environment of the vehicle at the most recent processed input data. We 
collectively refer to these guarantees as guarantees for bounding uncertainty. 
 

5.4 A reference architecture of the perception chain supporting 
uncertainty propagation for relevant objects 

This section proposes a functional reference architecture for the perception chain allowing to provably 
bound the risk for misperceptions. The following principles guided the proposal of this architecture: 

It must be possible to bound the contributions to risks for each component of the perception 
chain. 

This entails the need to specify for each element in the perception the conditions under which this 
element can be “trusted”. Violations of such conditions must be monitored and –if persistent– must 
induce declaration of “blindness”, automatically inducing minimal risk manoeuvres or delegation of 
HAV control to an external agency. 

The reference architecture must provide guidance as to the degree of precision of perception 
required for current manoeuvre decisions. 
The reference architecture must support the trade-off between maximal availability and maximal 
safety. 

A key element of our approach is that we dynamically adjust thresholds for declaring blindness, thus 
allowing optimal trade-offs between availability and safety. To this end, we propose, much as in 
[HMG+], a dynamically configurable perception chain, allowing to optimize resource usage, but in our 
approach in order to reach the level of precision in identifying relevant objects in the environment 
required by the criticality of misperception. 

We now elaborate on the functional reference architecture of the perception chain and its 
components, focusing on their functionality and quality requirements. Figure 27 below shows the 
overall architecture, depicting three stages of the perception chain: the sensor layer, the sensor fusion 
layer, and the world model layer. The latter two stages can be passed multiple times because of the 
dynamic reconfiguration capabilities offered by the interconnection network, such as allowing to pass 
fused information on to classifier components to reduce uncertainty. We note, that we do not assume 
any implementation of the Prediction Layer and the Decision Layer. Instead, we are relying only on the 
following specification of their interface, thus enabling integration of our approach with any 
implementation of the prediction- and decision layer meeting this interface specification:  

• The Perception Chain promises to deliver a Lagebild at time t+1, where all quality requirements 
for all relevant objects provided as input to the Perception are met (or else the perception chain 
declares temporary blindness), provided it receives from the Prediction- and Decision Layers a 



list of all relevant objects together with requirements on confidence and precision of 
measurements at time t; 

• The Prediction- and Decision Layers promise to provide to the Perception Chain a list of all 
relevant objects together with requirements on confidence and precision of measurements at 
time t+1, as long as they receive a Lagebild where all quality requirements for all relevant 
objects provided as input to the Perception Chain are met at time t. 

Indeed, by propagating down along the perception chain the information, which objects in the 
environment are relevant, what degree of confidence must be achieved regarding their existence and 
their classification, and what maximal degree of uncertainty is tolerated in determining physical 
properties such as distance and velocity, we can reserve computation resources for exactly those 
sensors, sensor fusion components, and classifier components required to achieve these quality 
criteria. Each stage determines for such relevant objects the currently achieved degree of uncertainty, 
allowing the control unit of the interconnection networks to determine required interconnections for 
further processing fused sensor and classification data until these reach the quality requirements 
imposed by the prediction engine. We note that this architecture thus supports plausibility checks for 
AI based components exploiting time-redundancy; moreover, by integrating classifiers covering 
multiple levels of the ontology, it is also possible to detect inconsistencies in classifiers if the 
determined classifications violate the ordering constraints of the ontology. 

  

 

Figure 27 The reference architecture of the perception chain 

This architecture is based on a notion of what we call "sufficiently perfect components" of the 
perception chain. These components allow at run time, and thus in a concrete situation, to inductively 
derive guaranteed bounds on the maximum level of uncertainty, provided the system is currently 
operating in well-defined ODDs.  

The induction basis will be provided by “sufficiently perfect sensors”. Such sensors are required to 
come with a characterization of adverse environmental conditions known to be detrimental to their 
guarantees, such as intensity levels of fog for lidar, strong levels of rain for radar, sunlight reflections 
on a wet street surface for video, or tunnels for radar. We will use real-field tests to generate virtual 
sensor models demonstrating not only sufficiently precise processing of raw data in non-adverse 
conditions, but which are also additionally able to demonstrate the same degradation effects as real 
sensors. This will allow us to quantitively assess the level of uncertainty not only based on field 
measurements, but using large test sets of completely reproducible environmental conditions in digital 
twins of the environment and the sensor components. We will also characterize environmental factors 
partly controllable by the ego system, such as analyzing current vibration levels, the level of precision 



of positioning information, precision of measurements of the velocity of the ego system, etc. We also 
include "sufficiently perfect digital maps" as anchoring components in the perception chain. 

 

Figure 28  Components of the Reference Architecture of the Perception Chain 

We propagate such guarantees along the perception chain by requiring what we call “sufficiently 
perfect sensor fusion components” and “sufficiently perfect classifier components”. The meta-
requirements for such components demand that each such component comes with a characterization 
of adverse environmental conditions and allowed ODDs. E.g., a classification component can only be 
required to provide guarantees for bounding uncertainty if the actual environment of the ego system 
is matching the characteristics in the data used for training classifier components with respect to types 
of objects, distribution of objects, and (if applicable) dynamic of objects in the analyzed video stream. 
For sensor fusion components, adverse conditions will be derived dynamically. Specifically, all inputs 
must be decorated by a characterization of environmental conditions under which they were collected, 
time stamps of raw data used, the component type delivering this input, and the adverse conditions 
of this component type.  

 

Figure 29 Uncertainty Quantification Components 



5.5 Bounding Uncertainty for AI-based Classifier components 
We now discuss what could be called “adverse conditions” for AI-based classifier components. This 
part is based on the paper by [PT2020] performing a generic risk assessment for AI-based classification 
components based their life cycle. All material in this subsection is quoted directly from [PT2020]. 

 

Figure 30 Process Model for AI based components, from [PT2020] 

The following list of adverse conditions for AI-based classifiers follow the different phases in the life 
cycle of AI-based classifier components, and are labelled both by the phase and either as static or 
dynamic. Static adverse conditions must be eliminated at design time, e.g. by following the guidelines 
proposed by Simon Burton [BH2023] which are influencing the development of ISO PAS 8800. 

RE1  Incomplete definition of data (static) 
RE2  Incorrect objective function definition (static) 
RE3  Inadequate performance measure (static) 
RE4  Inadequate safe operating values (static) 
DM1 Inadequate distribution: 

• the distribution of the training examples does not adequately represent the 
probability distribution of (X, Y) (e.g., due to lost or corrupted data) (static) 

• the distribution of input variables can be different between training and the 
operating environment due to shifting environments during the lifecycle of the 
system (dynamic) 

• rare examples are absent or under-represented due to their small probability 
density (both static and dynamic) 

• not representing known statistically relevant examples of adversarial attacks in the 
training data (both static and dynamic) 

• bias not matching intended operational context (static and dynamic) 
DM2 Insufficient dataset size (static) 
DM3 Irrelevance: the data acquired contains extraneous and irrelevant information (static) 
DM4 Quality deficiencies: 

• data collected (based on sensors but also on human input) are limited in their 
accuracy (static) 

• during data annotation, quality could be compromised due to the incorporation of 
incorrect labels or incorrectly annotated area (static) 



• the inclusion of non-realistic examples during data augmentation could affect 
dataset quality by generating data that do not make sense and change the 
complete meaning in a sample (static and dynamic) 

 
MD1 Model mismatch: the model does not fully cover the requirements (static) 
MD2 Model Bias inherently induced by the chosen model (static) 
MD3 (Hyper) Parameters mismatch of parameters chosen in modelling (static) 
MD4 incorrect error rate (dynamic) 
MD5 the probability of failing is intrinsic to an ML model: The system is not able to ensure 

the complete correctness of an ML module output in the user environment where 
unexpected input occurs sporadically (dynamic) 

MD6 Lack of interpretability (static) 
 
MTV1 Incompleteness: Due to the large input space, it is difficult to test or approximate all 

possible inputs (the unknown is never tested). This way, the ML model only encounters 
a finite number of test samples and the actual operational risk is an empirical quantity 
of the test set. Thus, the operational risk may be much larger than the identifiable 
actual risk for the test set, not being representative of the real-world operation 
performance (dynamic) 

MTV2 Non-representative distribution of test set (mirroring deficiencies DM1-4) (static and 
dynamic) 

 
MDY1 Differences in computation platforms: Deploying a model into a device can result in 

computation limitations and compatibility issues across platforms, requiring 
adaptations potentially invalidating testing and verification results (static) 

MDY2 Operational environment: Differences between the operational environment and data 
used for model development and testing, can lead to different/new inputs that affect 
the output produced, (dynamic) e.g. by 
o failure of one of the subsystems that provide inputs to the deployed ML model, 
o deliberate actions of an adversary;  
o changes in the underlying processes to which the data are related (changes on the 

environment or on the way people or other systems behave) 
MDY3 Non detection of potentially incorrect outputs (dynamic) 
MDY4 New data/Continuous learning. This hazard only considers the case of online learning 

(i.e., systems that continue to learn parameters and train the model during operation). 
Despite the fact that the incorporation of new data from the real operation domain 
suggests improving the model performance, since new data are added to the model 
training, the dataset distribution could be biased and it is no longer supervised, 
susceptible to result in lower model performance in scenarios that are no longer as 
frequent on the new data (e.g., a self-driving vehicle that was trained before operation 
on an adequate distributed dataset is now operating only at dark scenarios; for this 
case, the model could start to be optimized for dark conditions and to behave less 
accurate in the remaining day time scenarios). (dynamic) 

Thus, adverse conditions for classifier components are induced by any of the dynamic hazards in the 
above lists, and results of AI-based classifiers can only be trusted, if both the static hazards have been 
addressed at design time, and the dynamic hazards are controlled at run-time.  

The quality requirements enforcing consistency between the actually observed types and distributions 
of objects, and those used in training data, entails the need for regular over-the-air updates of AI-based 
classifier components. Processes must be established which monitor any statistically relevant 
deviations between actually observed data and data used during training, as well as monitoring for 
new types of objects requiring updates to the ontology. This need is well understood, as documented 
by numerous projects addressing the Devops cycles, leading to what is now called the MLOps cycle. 



While these process-oriented measures will drastically reduce the risk of misclassification, they must 
be complemented with AI-centered research on improving accuracy, robustness, explainability, as e.g. 
discussed in the SafeTRANS Roadmap on Foundations for Safety and Explainability of AI based Safe-
Critical Applications33 and in the recommendations of the [UNA2024] to appear. 
 

5.6 Propagating Uncertainty guarantees in sensor fusion 
We will use approaches akin to Dempster-Shafer adapted to the guarantees for bounding uncertainty, 
to compute the maximal probabilistic guarantees for uncertainty for output streams of such 
components, and determine the adverse conditions by conjoining adverse conditions of components 
providing input streams with high relevance in strengthening guarantees for bounding uncertainty.  

Let us illustrate on the classification case how we can derive quality attributes for fused data by fusing 
data of two sensors. 

We can derive a composed sensor s as the fusion of two qualified positioned sensors <s1,pos1> and 
<s2,pos2> as follows: 
 

– ad(s) is the disjunction of ad(s1) and ad(s2) 
– visible(s) = visible(<s1,pos1>) ∪ visible(<s2,pos2>)  
– for each p ∈occupancy grid(ego): 
if p ∈ visible(<s1,pos1>) ∩ visible(<s2,pos2>) then 
if ¬ad(s1)∧¬ ad(s2) then  
if label(s1)(p) ∧ label(s2)(p) ≠false  then label(s)(p) := label(s1)(p) ∧label(s2)(p) 
else label(s)(p) := ⊥ 
  else if ad(s1)∧¬ad(s2) then label(s)(p) := label(s2)  
else if ¬ad(s1)∧ad(s2) then label(s)(p) := label(s1) 
 else if ad(s1) ∧ ad(s2) then label(s) := ⊥ 
else if p∈visible(<s1,pos1>) \ visible(<s2,pos2>) then label(s) := label(s1)  
 else if p ∈ visible(<s2,pos2>) \ visible(<s1,pos1>) then label(s) := label(s2) ii 
fi 

Recall that labels are part of an ontology with a lattice structure. The fusion operator ∧ on labels is 
accordingly based on the classical meet-semilattice. 

We illustrate some cases of the above definition: 
• Parts of the occupancy grids are labelled free, if all sensors for which this part is visible and which 

are operating in non-adverse conditions agree on this;  
• however, if one sensor operating in non-adverse conditions senses one object, while other 

sensors operating in non-adverse conditions detect no object, the fusion operator yields ⊥.  
• In general, any detected inconsistencies are marked ⊥. 
• If, for example, front radar and front camera, both operating in non-adverse conditions, agree on 

identifying an object in a field of the occupancy grid, then the fusion of their sensor values at 
this field of the occupancy grid contains the detected position and speed of the object, as well 
as a sequence of vertical slices of a series of matrices of gray values of pixels.  

• For observations where both sensors are in non-adverse conditions, and both sensors observe p, 
then the risk of misperception is reduced to rs1 × rs2 if the misperceptions are stochastically 
independent and under operating conditions favorable for both sensors.  

• Otherwise the risk for misperception of the fused system for a field visible to both sensors is 
min(rs1,rs2). 

As suggested by Dietmayer et al (see, e.g., [MDM2010], [FHW+2022]), we will generalize this approach 
using versions of Dempster-Schafer Theory. We assume type classifications based on standardized 
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partially ordered ontology with top elements static or dynamic and probability of correctness of object 
type classification. We also assume location information with information of aleatoric uncertainties in 
precision of measurement and confidence in measurement. Figure 31 below taken from [FHW+2022] 
illustrates the assumed setting for a concrete instance in an urban driving scenario. 

 

Figure 31 A conceptual illustration of probabilistic object detection in an urban driving scenario (taken from [F et al 22]) 

As argued in [MDM2010], this calls for a generalized fusion of heterogeneous sensor measurements 
for  
multi-target tracking:  

• No single sensor system can provide the basis for sufficiently concise perception 
• A fusion system which supports different types of sensors, like radar, laser or image-based sensors 

without adapting the fusion algorithm is desired. 
• Such a reusable fusion system would lead to a high reduction of costs and time to market. 

This requires a generic characterization of sensors, their generated time series of environment 
perception, and their confidence in these measurements. A foundation for this approach has been laid 
out in chapter 4 in characterizing the quality of measurements for different sensor types. Based on this 
information, the Dempster-Shafer approach allows to derive maximal quality guarantees for fused 
sensor data. 

The key elements of the Dempster-Shafer Theory of Evidence (DST) as developed in [MDM2010] are 
summarized below: 

• The frame of discernment Ω is defined as the set of elementary hypotheses  
ai: Ω = {ai}, i = 1, ..., n. 

 

In our multi-sensor fusion system, this should be given as a partially ordered ontology of objects in 
traffic scenes and their attributes such as relative distance, speeds, azimuth, … 

 
• A basic belief assignment (BBA) m is a mapping from the power set 2Ω of the frame of discernment 

to the interval [0, 1] with the following properties: 

 
• The degree of belief of a BBA m for a proposition A is defined as 

 
• The degree of plausibility is defined as 



 

 
The plausibility Plm(A) is therefore the sum of all probability mass assigned to propositions which 
are not contradicting A, exploiting partial order. 

From a safety perspective, the resulting capability to explicitly characterize the plausibility of both 
presence and absence of an environmental object A combined with the explicit confession of ignorance 
is a key strength of this approach. They allow to generalize the simple Boolean fusion operator 
described above to richer type structures, addressing both the situations where different sensors have 
contradictory observations, thus detecting inconsistencies, as well as situations where weak 
plausibility of identification of an environment object A can be compensated by high plausibility of 
detection of A by a second sensor. Graphically, this fusion is nicely supported by depicting the 
detection capabilities of a single sensor as shown in Figure 32 below: 

 

 

Figure 32  Visualization of detection Capabilities of a Single Sensor 

Let us illustrate the fusion of such qualified sensor measurements with a simple example, involving 
fusion of Lidar data and Camera data. 

The left side of Figure 33 gives a bird’s eye view of the perception of the traffic environment shown on 
its right side as seen by a Lidar sensor, the right-side highlights detections in this scene from a video 
camera in magenta, overlaid by projected lidar segments (blue, green, red, yellow).  

 

 

Figure 33 Detections of one and the same traffic scene as observed by Lidar and Camera 

For simplicity, let us assume that we are interested in extracting only three categories from sensor 
fusion: 

• N: No object exists 
• O: there is an object at this position, but it is not relevant for the current driving situation 



• R: there is an object at this position, and it is relevant for the current driving situation 

Let us assume that the video sensor can distinguish between the proposition {N,O} and {R} but not 
between {N} and {O}, and that the laser scanner module can separate {N} from {O,R} but only very 
poorly {O} from {R}, as depicted in Figure 34 below: 

This leads to the following set of propositions: 

2Ω  = {𝜙𝜙,N,O,NO,R,NR,OR,NOR}. 

Each of the propositions of 2Ω can now be assigned a probability.  

In the above two sensor example the video camera module would assign the following probabilities to 
the BBA based on the measurement z with the frame of perception FC = {R}: 

 

The BBA of the laser scanner module will be 

 

and the corresponding frame of perception FL = {OR}. 

The fusion of the laser BBA and the video BBA can be done according to the formula 

𝑚𝑚1⊕2(𝐴𝐴) =
∑ 𝑚𝑚1(𝑋𝑋)𝑚𝑚2(𝑌𝑌)𝑋𝑋∩𝑌𝑌=𝐴𝐴

1 − ∑ 𝑚𝑚1(𝑋𝑋)𝑚𝑚2(𝑌𝑌)𝑋𝑋∩𝑌𝑌=∅
 

For our example, we first consider 𝑚𝑚1⊕2(𝑁𝑁). The nominator is 

𝑍𝑍1 = 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁) + 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑁𝑁) + 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑅𝑅) + 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑁𝑁𝑅𝑅) + 𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑁𝑁)
+ 𝑚𝑚1(𝑁𝑁𝑅𝑅)𝑚𝑚2(𝑁𝑁) + 𝑚𝑚1(𝑁𝑁𝑁𝑁𝑅𝑅)𝑚𝑚2(𝑁𝑁) + 𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑅𝑅) + 𝑚𝑚1(𝑁𝑁𝑅𝑅)𝑚𝑚2(𝑁𝑁𝑁𝑁) 

and the denominator is 

𝑍𝑍2 = 1 − 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑅𝑅) − 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑅𝑅) − 𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁) −

Figure 34 Visualization of Beliefs of Lidar and Camera 



𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑅𝑅) − 𝑚𝑚1(𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑅𝑅) − 𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁𝑁𝑁) − 𝑚𝑚1(𝑁𝑁𝑅𝑅)𝑚𝑚2(𝑁𝑁) −
𝑚𝑚1(𝑁𝑁𝑅𝑅)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑅𝑅), 

so that  

𝑚𝑚1⊕2(𝑁𝑁) =
𝑍𝑍1

𝑍𝑍2
 

Thanks to many BBA assignments being zero, this expression boils down to 

𝑚𝑚1⊕2(𝑁𝑁) =
𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑁𝑁)

1 − 𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑅𝑅)

=
𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧)

1 − 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) − 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)
 

Note that the denominator is identical for all BBA fusion arguments. The remaining BBA fusion 
assignments are 

𝑚𝑚1⊕2(𝑁𝑁) =
𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑁𝑁𝑅𝑅)

1 − 𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑅𝑅)

=
𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)(𝑝𝑝2;𝑇𝑇𝐹𝐹(𝑧𝑧) − 𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧))

1 − 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) − 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)
 

𝑚𝑚1⊕2(𝑅𝑅) =
𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑅𝑅) + 𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁𝑅𝑅)

1 − 𝑚𝑚1(𝑅𝑅)𝑚𝑚2(𝑁𝑁) − 𝑚𝑚1(𝑁𝑁𝑁𝑁)𝑚𝑚2(𝑅𝑅)

=
𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧) + 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)(𝑝𝑝2;𝑇𝑇𝐹𝐹(𝑧𝑧) − 𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧))

1 − 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) − 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)
 

It holds that 𝑚𝑚1⊕2(𝑁𝑁𝑁𝑁) = 𝑚𝑚1⊕2(𝑁𝑁𝑅𝑅) = 𝑚𝑚1⊕2(𝑁𝑁𝑅𝑅) = 𝑚𝑚1⊕2(𝑁𝑁𝑁𝑁𝑅𝑅) = 0, which can be verified by 
inserting all single BBA assignments or by observing that  

𝑚𝑚1⊕2(𝑁𝑁) + 𝑚𝑚1⊕2(𝑁𝑁) + 𝑚𝑚1⊕2(𝑅𝑅) = 1 

since 

𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) + 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧) �𝑝𝑝2;𝑇𝑇𝐹𝐹(𝑧𝑧) − 𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)� + 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)

+ 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧) �𝑝𝑝2;𝑇𝑇𝐹𝐹(𝑧𝑧) − 𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)�
= 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) + 𝑝𝑝2;𝑇𝑇𝐹𝐹(𝑧𝑧) − 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)
= 1 − 𝑝𝑝1;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧)𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) − 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧)𝑝𝑝2;𝑣𝑣𝑟𝑟ℎ𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧) 

due to the relation 𝑝𝑝1;𝐹𝐹𝐹𝐹(𝑧𝑧) + 𝑝𝑝1;𝑇𝑇𝐹𝐹(𝑧𝑧) = 𝑝𝑝2;𝐹𝐹𝐹𝐹(𝑧𝑧) + 𝑝𝑝2;𝑇𝑇𝐹𝐹(𝑧𝑧) = 1. 

We refer to [MDM2010] for the formal definition of the fusion operator. While thus a conceptual 
framework for propagating guarantees of the level of uncertainties exist, we note that Dempster-
Shafer works only well for small universes of a handful of propositions, but doesn't scale well due to 
the necessity of identifying all (i.g. exponentially many) inconsistent combinations. The challenge thus 
remains to develop algorithms rendering Dempster Shafer reasoning scalable. Also, in many cases, 
Dempster Shafer would enhance fusing results by rescaling the individual results after eliminating 
impossible combinations. This, however, also implies that Dempster Shafer breaks stochastic 
independence and may introduce fallacies when arguments involve it, a topic demanding further 



research. 

At the highest level of the perception chain, sensor fusion components provide what is often called a 
“world model”. This is comprising all artefacts in the environment of the ego system relevant for 
maneuver decisions, with guarantees for bounded uncertainty.  

A world model at time t identifies  
• for all relevant objects in the environment of the vehicle a consistent description of their 

classification with guaranteed confidence levels in existence and classification, as well as their 
position and relative distance with guaranteed level of precision and additionally, for all 
dynamic objects, their velocity, with guaranteed levels of precisions; 

• all relevant other environmental artefacts, subsuming in particular those relevant for identifying 
adverse conditions for all components in the perception chain. 

Rather than denoting the fusion of high-confidence inconsistent data observed under non-adverse 
conditions as inconsistent, we propose to view this as a temporary inconsistency which will be resolved 
by future observations, and thus maintain multiple possible world models. To this end, please note 
that we are generally operating in a setting of monotonic reasoning over possible-world models, 
attaching likelihoods to possible worlds by means of Dempster-Shafer belief strength. In such a setting, 
a set of high-confidence inconsistent labeling ought in principle not happen, as it points to wrong 
assumptions about the individual sensors’ reliability – the empty set of possible worlds has no physical 
realization and can only be inferred from incorrect assumptions. Nevertheless, we have to be prepared 
for this case, as such inaccuracies in the assumptions about sensor performance will inevitably arise, 
as will then the corresponding inferences. The consequences for a monotonic reasoning framework 
over possible worlds would be devastating, as any possible maneuver would be considered safe over 
the empty set of possible worlds, i.e., any maneuver be justified. We therefore implement two extra 
safety measures that are activated when high-confidence inconsistent data arise: 

• The respective quantitative inference graph has to be recorded in order to permit root-cause 
analysis and subsequent adjustment of the quantitative sensor models.  

• Rather than deriving the empty world (with high confidence), we consider all the worlds indicated 
by the different inconsistent sensors and their respective inference chains possible, i.e., we 
realize a strictly pessimistic sensor fusion in this special case. This is a safety mechanism, as all 
safety-relevant maneuvers then have to be justified over all the possible worlds, which are 
bound or at least extremely likely to contain the real one. 

As noted above, we don’t expect this state to persist, as subsequent observations will refine the set of 
possible worlds again, thereby successively removing the pessimistic over-approximation of possible 
worlds, which however permits to safely survive the sensor (or rather sensor model) failure that 
manifested in the high-confidence inconsistent data observed. 

Vehicles may insert an additional layer in the perception chain allowing for fusing their world model(s) 
with world models provided by infrastructure or vehicles in the neighborhood. This requires 
standardized representations of world models used for such interchanges, such as by evolving 
ontology standards and quality and confidence attributes as defined previously, and time stamps. 
Using such information for fusing world models must take into account the variable transmission 
latencies of such messages. Protocols must be established for secure communication and 
trustworthiness of senders of such messages. 

Jointly, we can thus derive for each stage in the perception chain the level of uncertainty for relevant 
environmental artefacts for maneuver decisions of the ego system, such as those provided from the 
prediction and decision layer. 
  
  



6. Credible Co-Simulation and Model Composition 
As discussed in the previous chapters, the realm of automated driving functions is characterized by a 
complex sequence of tasks, encompassing environment perception, sensor fusion, object detection, 
tracking, prediction, behavior planning, and actuator control. Given the intricacies involved, testing 
these functions through simulation, especially as part of the safety approval, brings the highest 
requirements possible when building up the whole simulation out of multiple models. While 
perception sensor simulation and sensor fusion modeling has been described, the following chapter 
widens the view towards the overall concept of co-simulation for safety validation. It also proposes a 
flexible composition of modeled effects to build the models depending on the simulated scenarios and 
demands to evaluate their fidelity per scenario and how these differently composed models from 
different sources build a per-scenario valid co-simulation. 

To build up a solid safety argumentation during the homologation process, the primary objective of 
safety validation, whether conducted in a virtual, physical, or mixed environment, is to generate 
evidence supporting claims. This evidence is crucial for constructing a trustworthy safety 
argumentation. This process has been researched in depth in the Verification and Validation Methods 
(VVM) project. The simulation process often involves multiple distinct models from diverse sources in 
a modular architecture termed co-simulation. This is necessary, when e.g. multiple different sensor 
manufacturers deliver sensor models for different modalities that come together at an OEMs co-
simulation of the vehicle. The combination of multiple models reveals the question of validity as such, 
even if they are already separately validated for the targeted application domain and scenarios to 
simulate. To light up the path towards such a valid co-simulation, multiple standards, tools, and the 
credible simulation process are applied. The challenge as such highlights the necessary interplay 
between science and industry, the fusion of free and commercial tools and models. 

The first challenge is purely technical and involves the integration of diverse models from different 
sources. Such a modular simulation architecture, as shown in Figure 35  Generic Simulation 
Architecture, © Persival GmbH, is called co-simulation. It starts with a scenario player that moves the 
objects’ 3D assets within the scene, according to the scenario description. It incorporates models for 
traffic participants behavior, vehicle dynamics, and many more. The perception sensor models, which 
have been discussed in chapter 4, produce the synthetic sensor data that is then fused with 
probabilistic strategies according to the actual predicted capabilities of each sensor, as described in 
detail in the previous chapter. Subsequently, objects are detected and tracked/predicted, and the 
vehicle’s internal environment model is built. Based on this, the vehicle plans and acts, while both last 
steps are out of scope of this paper. 

 

Figure 35  Generic Simulation Architecture, © Persival GmbH 



Co-simulation tools34 are needed that act as co-simulation master and therefore take care of the 
simulation flow, the data exchange between the models, and the timing. These tools facilitate the 
integration of distinct models, enabling a comprehensive evaluation of complex interactions. The 
central part of the simulation is the scenario player, which often also acts as co-simulation master. 
Commercial simulation tools often entail own models for driver and object behavior, vehicle dynamics, 
environmental conditions, and sensor performance. Most of them also bring a library of static scenes 
and 3D assets. Still, multiple parts of the whole simulation often come from different sources and 
modelers, e.g. the sensor models from the actual manufacturers of the sensors, the scenes from real 
world capturing, etc. The scenarios and scenes, as well as the 3D assets for the static scenes and the 
movable objects in case of ray tracing and other detailed rendering techniques are taken from one or 
multiple databases provided by possibly several suppliers. Marketplaces35 are emerging as essential 
platforms for accessing multiple of the simulation components shown in Figure 35 

In previous projects on simulation-based testing like the already mentioned ENABLE-S3, Pegasus, 
SETLevel, and Vivid, several simulation models have been developed to set up whole co-simulations. 
These initiatives have paved the way for the establishment of standards that facilitate seamless 
integration of models from different sources and enable communication between these simulation 
components. The standards include: 

• Modelica FMI: Enabling model exchange and co-simulation through a functional mock-up 
interface. 

• Modelica SSP: Providing a standardized simulation platform for consistent interfaces. 
• ASAM OpenSCENARIO: Defining scenarios for testing advanced driver assistance systems (ADAS) 

and automated driving functions. 
• ASAM OpenDRIVE: Describing the road network and contextual aspects. 
• ASAM OpenCRG/OpenMATERIAL: Detailing road surface and object material modeling to 

enhance simulation realism. 
• ASAM Open Simulation Interface (OSI): Enabling effective communication between different 

simulation tools and models. 
• ASAM OpenLABEL/OpenTEST/OpenODD: Focusing on labeling, testing, and describing the 

operational design domain. 
• ISO11010-1 and 11010-2 on classification of vehicle dynamics simulation models and perception 

sensor simulation models 

An effective simulation ecosystem thrives on a harmonious amalgamation of free and commercial tools 
and models. The credibility bestowed upon open-source solutions resonates well within the 
community, fostering trust through inspectability and collaboration. Interestingly, open-source 
options might even complement and enhance commercial models. This fusion is pivotal in creating an 
inclusive environment where innovation is nurtured. The convergence of such diverse simulation 
models from different vendors underscores the complexity of the simulation task. These varied 
components coalesce to form the co-simulation architecture, necessitating seamless interoperability 
and communication. The challenge lies not only in technical integration but also in nurturing a 
cooperative environment among stakeholders with distinct interests. 

The landscape of simulation tools includes both commercial offerings and open-source alternatives. 
Commercial tools provide pre-built models and assets, streamlining the simulation process. However, 
open-source tools36 and scenario players37 offer often sufficient functionality while gaining trust 
through their open-source code. However, comprehensive testing is needed that can be applied on 
the models within automated testing pipelines, from automated verification of the implementation to 
continuous comparison against real sensor data, as e.g. demonstrated on OpenMSL on the provided 
                                                           
34 Eclipse Founda�on: OpenMCx (htps://github.com/eclipse/openmcx) 
35 Automo�ve Solu�on Center for Simula�on e.V.: ENVITED Marketplace (htps://envited.market/) 
36 CARLA Simulator (htps://carla.org/)  
37 Basic OpenSCENARIO player Environment Simulator Minimalistic: esmini (htps://github.com/esmini/esmini) 

https://github.com/eclipse/openmcx
https://envited.market/
https://carla.org/
https://github.com/esmini/esmini


open-source models.38 

Smooth transition across testing levels (SiL, HiL, ViL) is a pressing need, as well. Here, standardization 
comes in handy. For instance, the transfer of OpenDRIVE files, OpenMATERIAL scene assets, and other 
simulation components should be seamless. This seamless transfer ensures that the testing framework 
remains coherent as the simulation progresses from virtual environments to real-world scenarios, 
preventing an unwieldy test bench. Additionally, the simulation runtime on different hardware should 
be monitored and as soon as hardware gets in the loop, real-time execution speed becomes 
mandatory. In SiL testing, scalability and cloud infrastructure can be leveraged and speed up 
development and testing processes. HiL testing involves already embedded systems while others stay 
simulated as a digital twin. This complex interplay therefore needs a lot of coordination between all 
involved parties and specification of interfaces. Provided metadata becomes key regarding the 
traceability in testing applications. 

Another often neglected aspect is the need for customization of models depending on the particular 
testing objectives. This even involves to differently compose the modeled effects per testing scenario. 
This means e.g. that for some tests that evaluate the general behavior of some sensor fusion aspects 
are fine with computationally fast, low-fidelity and effect-reduced sensor models, while other tests 
need high-fidelity sensor models that involve multiple computationally slow effects like multipath 
propagation on mirroring surfaces with exact intensities computed for each reflection. In other words, 
there is not only a single radar model involved in simulation-based safety validation, but multiple 
models of the same real world radar sensor with differently composed effects to suit the respective 
testing requirements. Consequently, a standardized method for model classification depending on 
their composition is required to facilitate proper model selection. Luckily, this pressing need is already 
acknowledged by peer-groups like the IAMTS 39 and by standardization activities like the ISO 11010-2 
work item proposal40 for the classification of perception sensor models. Here, a scheme for the 
combination of effects is proposed to enable a flexible and modular catalogue-like selection process 
of the individual required model composition for each test. 

Credible Simulation, however, entails more than selecting and coupling model compositions together 
for a complete simulation of the environment and the objects moving within for each test. According 
to Liu et al. “the credibility of a model or simulation is an expression of the degree to which one is 
convinced that a particular model or simulation are suitable for an intended purpose”.41 The National 
Aeronautics and Space Administration (NASA) further defines credibility as “the quality to elicit belief 
or trust in [Modelling & Simulation] M&S results”.42 To determine the credibility of a model or 
simulation, a specific application purpose must be defined.Fehler! Textmarke nicht definiert. According to Liu et 
al., the factors of validity, correctness, reliability, usability and interoperability must be considered 
when assessing the credibility of a model. Therefore, not only the composition, but also the fidelity 
and the level of detail of each modeled effect has to be considered and validated. 

As already discussed in the previous chapters, validation of all models with decent metrics and 
predicting the model error for the targeted usage of the simulation becomes inevitable. This also 
includes validating the simulated 3D environment and environmental conditions. It highly influences 
the necessary effort in modeling perception sensor performance but also vehicle dynamics. Replicating 
real-world conditions with a high degree of accuracy is the often-mentioned objective in simulation, 
but validation must ensure that the simulation only considers the relevant cause-effect chains and not 
every possible effect.43 This means to ensure that the models are only composed of the relevant effects 
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for each simulation run during the overall simulation-based safety validation. As proposed by Linnhoff 
et al., the Operational Design Domain (ODD) of the current scenario to be simulated results in a specific 
application are within the parameter space of each model, which in combination with the known 
sensor to simulate leads to a set of relevant cause-effect chains. This set of relevant effects is the model 
composition for the concrete simulation task. However, automation is needed at this point, as multiple 
models are involved, and a large number of scenarios is to be run within a simulation-based 
homologation. Still, a methodological way of model selection is possible. 

As an integral component of the successfully concluded SET Level funding project44, innovative 
methodologies and processes were devised to facilitate the credible selection and interchange of 
(sensor) models. To achieve this, an initial categorization of simulation models pertaining to perception 
sensors (such as radar, lidar, and camera) was established. This classification was based on ISO 11010-
1 in terms of structure and procedure.  

Additional noteworthy processes for assessing credibility include the IAMTS reference process45, which 
ensures the reliable utilization of virtual validation methods. Furthermore, the "Credibility Assessment 
Framework"46 and the "New Assessment/Test Method for Automated Driving (NATM)"46 developed by 
the Validation Method for Automated Driving (VMAD) working group under the United Nations 
Economic Commission for Europe (UNECE) provide valuable perspectives. The National Aeronautics 
and Space Administration (NASA) standard STD-7009A also stands out as a relevant benchmark in this 
context. For the qualification of the used tools the [ISO26262[ Tool Confidence Level (TCL) can be 
utilized. 

To conduct an effective credibility assessment, it is essential to model not only the System in 
Development (SiD) but also the validation system and its dependencies. This approach enables the 
automatic detection of inconsistencies between the SiD and the validation environments, facilitating 
assumptions about credibility. In the DFG CRC 1608 (Consistency in the View-Based Development of 
Cyber-Physical Systems)47 methods for modeling both SiD and validation environments, along with the 
automatic detection of inconsistencies, are being researched. 

To compare the credibility of multiple validation configurations or toolchains, considering a calculation 
of a credibility index appears to be a viable approach. This index could draw inspiration from the 
methodologies proposed by Liu et al.41 and Muessig et al.48 Given the inherent uncertainties associated 
with this index, leveraging Bayesian probabilities becomes a valuable consideration. Furthermore, 
aligning with the principles outlined in the Guide to the Expression of Uncertainty in Measurement 
(GUM) may provide additional insights. 

When modifying components within a simulation toolchain, it may be unclear whether a 
comprehensive re-evaluation of the entire toolchain is required. The P.E.A.R.S Initiative presents an 
approach that employs a round-robin methodology. For instance, various simulation tools are applied 
under identical conditions to evaluate sensitivities systematically. 

As introduced by the SET Level project, the so-called Credible Simulation Process (CSP)49 covers the 
mentioned steps from model requirements definition and model meta data as so-called glue-particles, 
further detailing into the Credible Modeling Process (CMP) and the Model Selection and Exchange 
Process. It is currently further specified by Prostep IVIP and the SmartSE project50, while being adopted 
by Ahman et al. in the project UPSIM51 and also further detailed for sensor model testing on the 
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OpenMSL platform as the so-called OSMP Test Architecture.52 

Furthermore, beyond model validation and consistent metadata for each model, establishing credible 
simulation involves ensuring a safe and controllable overall development and exchange process. An 
important aspect in this exchange is of course the intellectual property (IP) protection of the IP that 
went into building the models of real sensors. So legal aspects play a role and must be handled by the 
process. Besides, as already mentioned, timing constraints for each individual model or model 
composition state can’t be neglected. Sensor models for example mimic the frequency of a specific 
sensor in the simulation time while providing simulation results at certain computation times. To plug 
models together, this must be handled accordingly. 

However, building a credible co-simulation even encompasses to ensure that the combination of per-
se validated models, each validated for their individual application area, is valid, as well. Implemented 
and validated models entail implicit and explicit assumptions about their input data and application 
area for what they are validated for that must be satisfied and therefore checked at first, when 
combining the models from different sources. Additionally, monitoring the simulation and checks for 
the currently simulated conditions against each model’s validity area must be ensured before and 
during each simulation. 

A holistic view on credible (co-)simulation reveals several challenges, as described. Any models used 
are to be designed for the specific actual use case. Therefore, multiple different effect compositions 
are necessary to fit all needs. Some simulations entail bad weather and make very detailed perception 
sensor simulation necessary. Other scenarios just need very basic sensor performance models with 
false positive or negative objects that appear or vanish without applying high-fidelity rendering 
techniques like ray tracing for lidar. The most important question before any scenario is simulated is: 
Are the selected effects the right ones to compose for this case, are they modeled detailed enough or 
over-engineered and therefore too performance-costly? 

In the trajectory of advancing simulation-based testing of automated driving technologies, 
collaboration emerges as the cornerstone. The integration of science and industry, the fusion of open-
source and commercial models, and the harmonization of diverse simulation components all hinge 
upon cooperative efforts. Bridging the gap between scientific research and industry expertise is 
imperative, particularly possible in publicly funded research initiatives. Such cooperative projects 
establish a nexus where theoretical advancements meet practical application, laying the foundation 
for credible simulation methodologies. Nevertheless, regarding regulatory institutions, the proof of 
safety must be the focus of developments and model use. 

In a daring vision, credible simulation of sensor performance could be used to determine the actually 
required minimum capabilities of the wanted real sensor setup to still be sufficient for an automated 
driving function or for sensor fusion of multiple sensors under different conditions. In other words, the 
simulation could be used to determine the real sensor performance requirements in the selected ODD 
and its inherent adverse conditions. Such an approach would be a more problem-centric approach 
advancing the state of the art, where currently only the available sensors and their performance in 
different conditions are evaluated with expensive measurement campaigns. However, once the actual 
requirements are determined, the task of the manufacturers to meet them would become tangible 
and for the first time there is an achievable goal. 

In conclusion, co-simulation with models from different sources is currently a major challenge to solve, 
as sample validation of each model per-se is not enough. Standardization of data formats and 
interfaces is paramount. An ODD- and relevance-driven selection process for the individually 
composed effects for each simulation is needed. Therefore, the road to credible simulation 
necessitates a joint effort of all parties and stakeholders involved, where challenges are surmounted 
collectively, and innovation thrives at the intersection of knowledge and practice. In the near future, 
software-defined vehicles undergo continuous improvement through Over-the-Air (OTA) updates. 
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Given the ever-evolving nature of this system in development, there is a constant need for an adapted 
and enhanced safety validation environment to preserve a certain credibility. Concepts like the Digital-
Loop53 emerge as potential approaches to address this ongoing challenge, providing a framework for 
an iterative simulation-based homologation. 
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7. Verification and  Validation Methods and Processes 
 In the context of automated driving, verification and validation takes an important role for assuring 
safety and preparing a market release. Any automated driving system (ADS) introduces a certain level 
of risk into a public context which can be mitigated but not eliminated. This level of risk must be 
assessed by and dealt with by several stakeholders — depending on market context, these 
stakeholders may be manufacturers, operators, and/or authorities. A safety-by-design paradigm 
supports an adequate consideration of that risk during the system design. 

 This chapter elaborates on the assessment of the level of risk by (1) verification, i.e. the “confirmation, 
through the provision of objective evidence, that specified requirements have been fulfilled” 
[ISO/IEC/IEEE 15288] and (2) validation, i.e. the “confirmation, through the provision of objective 
evidence, that the requirements for a specific intended use or application have been fulfilled” 
[ISO/IEC/IEEE 15288]. From a safety perspective, one high-level requirement is that the system shall 
not introduce an unreasonable level of risk in its operational environment. Similarly, the fulfillment of 
other system-level requirements may be examined by verification and validation activities. 

 A promising new approach emerging from the Verification & Validation Methods (VVM) project is the 
safety assurance framework. This proposed framework deconstructs safety argumentation into 
multiple claims, each substantiated by supporting evidence. [VVM2023] The created evidence is not 
only dependent on the credibility54 of the used validation & verification (V&V) tool chain , but also on 
leveraging adequate analysis and development processes and a concern management process. The 
VVM safety assurance framework will be covered in more detail later in this chapter.  

 The provisioning of supporting evidence for the risk estimation and safety assurance can be, among 
others, based on credible (co-)simulation environments and digital twins. The credibility of this 
evidence is contingent not only on the validity of the underlying simulation models and V&V tool chain, 
as detailed in chapter 6, but also on the issues concerning test coverage and their management 
through a structured V&V process for automated driving functions, which is being explored in depth 
in this chapter. Demonstrating satisfaction of a certain requirement across the possible instances of an 
intended use case or application requires adding some form of coverage of these instances to the 
application of the validated (co-)simulation environments and digital twins.  

 Section 7.1 motivates traceable verification and validation processes targeted towards managing the 
level of risk on the system level. In order to assess the risk contribution from perception chain elements 
on the system level risk, an adequate decomposition of the actual and accepted risks is necessary. 
Based on these explanations, section 7.2 elaborates on how the specific evidence for validation and 
verification can be obtained using various techniques on several levels of abstraction and 
decomposition.  

 Testing is essential in order to generate the objective evidence for verification and validation. ADSs 
are developed in a melting pot of several engineering domains which bring their own approaches to 
testing to the table. Section 7.3 provides an overview of challenges while applying such approaches 
from the domains of software engineering and automotive engineering to these systems.  In order to 
generate verification and validation evidences, a multitude of test environments are available, ranging 
from simulation to real vehicles. Section 7.4 discusses how the test environment interacts with the 
validity of the V&V evidences and hence influences their credibility. Section 7.5 addresses 
decomposition and lays out current challenges, especially those relating to the need of representing 
uncertainty and probabilities during the process. 

 We summarize the current challenges in the verification and validation of perception systems used in 
ADS in section 7.6 and provide an overview of the identified needs for further research activities. 
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7.1 Supporting Continuous Risk Management through 
Traceable Verification and Validation Processes 

 Risk Acceptance Criteria 

 Established automotive safety standards, notably ISO 26262 and ISO 21448, define risk acceptance 
criteria based on the acceptable level of risk "according to valid societal moral concepts" [ISO 26262-
1:2018, 3.176]. It is important to note that the hazards that give rise to these risks arise from the 
system-level behavior of the ADS-equipped vehicle. Behavior includes the externally observable 
dynamic states of the vehicle, such as pose and velocity. Identifying hazards based on the behavior 
significantly improves the efficiency of the functional safety and SOTIF55 life cycles [GSB+2020]. This 
approach can be used to analyze risks at the system level. However, whether or how these system-
level risks can be decomposed through the system architecture in order to determine the risk 
contributions or risk budgets of the perception chain and its components remains an open question. 
As mentioned in section 5.1, the ability to provide such a derivation could potentially improve the 
validity of perception quality requirements. Furthermore, if proofs can be made about properties of 
the perception chain, e.g. using advanced fusion techniques, these proofs could potentially facilitate 
risk assessment.  

Managing Assumptions in the Engineering Process 

 An important tool for describing the operational context is the operational design domain (ODD). 
Combined with a structured description of the operational context using a domain model, the 
operational domain (OD), references can be made to assumptions for the system design. For example, 
in order to predict the behavior of agents, assumptions must be made about their characteristics (see 
section 5.1). It can be argued that such referencing can support rigorous modeling of the risk 
contribution by the perception chain. These assumptions also influence robustness certificates or 
guarantees that elements of the perception chain can provide to the rest of the system. Another aspect 
specific to machine learning (ML)-based components is the provision of a data set for training and 
validation of ML models. If the data set specification references some ODD description, the underlying 
assumptions are contained in the data set. Furthermore, out-of-distribution detection techniques may 
be deployed to detect an ODD exit – in turn requiring to terminate the execution of the dynamic driving 
task. 

 Given all the assumptions that underlie the system design, validation arguably involves a critical 
assessment of whether these assumptions are adequate for the operational context and thus for the 
intended purpose of the system. If (formal) guarantees are made and rigorously verified, and if the 
assumptions are validated, this creates a supporting argument for the validity of the system. 

 In order to provide evidence that an ADS does not introduce unreasonable risk in its operational 
environment, there are multiple open challenges that have only partially been addressed in the 
literature and previous research projects. 

One key challenge is the definition of the aforementioned risk acceptance criteria that are based on a 
public consensus on safety expectations of ADSs. For existing systems, such as driver assistance 
systems in road vehicles, the calibration of automotive safety integrity levels (ASILs) included the 
consideration of risk acceptance criteria with respect to functional safety according to ISO 26262. For 
ADSs such an analysis of relevant risk acceptance criteria is yet to be investigated. 

 Given a sound definition of risk acceptance criteria, design and validation targets need to be derived 
for the respective system in the aspired operational context. Following a safety-by-design paradigm in 
order to provide traceability of assumptions and requirements that can be evaluated through 
verification and validation activities is necessary to draw conclusions regarding the fulfillment of the 
defined risk acceptance criteria.  
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Scenario-based Verification and Validation 
 Traditionally, verification and validation of automotive systems largely relied on distance-based 
approaches, where achieving a certain mileage with high integration levels is a major cornerstone in 
eliciting confidence that a requirement is fulfilled. [WW2016] argue that following this approach for 
validating ADS can end in an “approval trap” due to the complexity of the open context. Instead, 
scenario-based approaches for the testing, verification and validation of automated functions, such as 
in the PEGASUS project [PEG2024], have been proposed. In contrast to distance-based approaches, 
this method structures the operational environments and enhances the effectiveness of V&V activities. 
Scenarios capture the temporal progression between scenes where a scene describes the scenery, the 
movable objects and their self-representation. Furthermore, a scenario entails actions and events as 
well as actors’ goals and values [BM18]. An open challenge remains to utilize scenario-based analyses 
in the context of risk management. For example, it is an open question how risk acceptance criteria 
and the derived design and validation targets can be applied to a scenario catalog that is supposed to 
describe the operational context of an ADS. 

 A useful tool to analyze and evaluate risks in a scenario-based approach that was proposed in the VVM 
project [VVM2023] is a solution-independent behavior specification. This behavior specification 
increases the traceability of verification and validation activities and rigorously provides a set of 
system-level requirements. Decomposing the system with a capabilities perspective can be an 
approach to obtain and justify quality requirements towards and determine validation targets for 
functional components of the ADS. Deriving such requirements towards the perception chain in a 
traceable manner based on previously established risk acceptance criteria remains a challenge. This 
decomposition problem is further detailed in section 7.3. 

 Another noteworthy process stems from the ENABLE-S3 project [ENS2019], aimed at diminishing total 
validation time by establishing a cross-domain V&V platform. A essential components of this proposed 
method include defining generic testing architectures which can be used as blueprints. These 
blueprints are instrumental in guiding users of the method through the development of an effective 
validation toolchain. Another component of the project are 24 patterns which describe diverse 
processes like scenario-based testing and support the V&V workflow. The project, with a pronounced 
focus on practical application, illustrates the concept through 13 representative use cases. 
  

7.2 Validation and Verification of ADS Perception Systems 
 The testing of complex systems – especially perception systems – must be viewed from different 
perspectives. On the one hand, the system itself must be tested with sufficiently realistic stimuli. These 
depend on the test objective and the level of integration. A single sensor can be tested differently than 
a fusing perception system of different sensor modalities, possibly including localization and high-
resolution maps. 

 On the other hand, the execution of the system in the selected environment must be considered. If 
models are used, these must be validated in advance for their intended use in order to be credible for 
their intended use. Requirements for the test systems are again dependent on the test objective. A 
closed loop simulation for testing the entire system has different requirements than, for example, an 
open loop simulation based on recorded real images as input. 

 Finally, the test evaluation for perception systems must also be considered. Common metrics are not 
designed for the execution of perception tasks in the vehicle context. In order to compare algorithms 
and select the best one, metrics must be developed that provide information on the quality of 
perception in the driving context. Object tracking over time and proximity to the ego vehicle can play 
a role here, for example.  

Test Objective and Level of Integration 
 The decomposition of the overall system creates various subsystems that are developed 
independently of each other and then integrated. Tests must be carried out at each integration stage 



in order to find errors as early as possible. The test objectives change depending on the integration 
level, as the system under test and its functionality become more extensive. In the case of perception 
systems, all sensors and their algorithms can initially be tested individually. Individual sensors are then 
linked and their detections fused. A distinction can be made between early-fusion, late-fusion and 
early + late-fusion approaches. During fusion, different sensor modalities – e.g. camera plus LiDAR – 
can be fused. In addition, the same sensors can be fused at different mounting positions on the vehicle, 
e.g. for a camera belt around the vehicle. 

 For individual sensors, but especially for the entire perception system, it must be shown during testing 
that it meets the requirements in defined scenarios. These scenarios need to cover the ODD and the 
use cases of the ADS adequately, ideally providing some (quantitative) coverage measure. The 
evidence gathered at each integration level must then be combined in a safety argumentation for the 
entire perception system. A process must be defined that defines the scenarios and hence test cases 
to be considered and defines a minimum level of quality for each test case execution. Cross-company 
standards are essential in order to set a baseline for testing and hence for an important activity to 
assure road safety.  

Test Content 

 The test content is defined by the data used for the test, i.e. contained in the scenario. This can be, 
for example, recorded camera images or point clouds from a LiDAR sensor. To ensure an adequate test 
coverage, the data must be carefully selected. Data recorded in real traffic contains long, redundant 
sections without any particular events or content relevant to the test. To increase the efficiency of 
tests, it must be possible to find relevant and specific content in the data. This requires methods for 
data search and interpretation. 

There are various approaches to searching for data. By enriching or tagging the data, additional 
information can be added to the individual images or sequences. Images and situations can then be 
searched for in the data using these tags. [RSS2022] Suitable artificial intelligence (AI) methods can 
also be used to search "directly" in the images. [RLS2023, RPS+2023] show, for example, how AI can 
be used to perform a semantic search based on natural language. The efficiency of the methods is 
particularly critical here, as they have to be carried out on very extensive data sets. 

 Once the relevant test data has been selected, the data set must be analyzed. A systematic approach 
[PET2022b] must be chosen to avoid biases or data leakage. Biases can occur in various forms, for 
example by recording data only at certain times of the year or day as well as by the data selection 
approaches mentioned above. Especially the use of AI for searching for relevant data may lead to a 
redundant nature of the bias issue. Data leakage describes the problem that the data used for testing 
is very similar to the training data of a function. In addition, AI can be used to check the extent to which 
the test data represents the entire data set. [SRL+2022] 

 An emerging branch of research is also the artificial generation of training data using, for example, 
generative adversarial neural network architectures [RIG2022], transformer networks, or foundation 
models (see GAIA-1 / NXTAIM). Another challenge is the provision of consistent test data across 
different sensor modalities. Approaches that go beyond replaying recorded data are still in their 
infancy. Both the synthetic generation of realistic raw sensor data for individual LiDAR and radar 
systems as well as the consistent modification of recorded sensor data for different sensor modalities 
have not yet been sufficiently researched.  

Test Case Execution 

Another aspect is the test execution. Here, questions need to be answered about the extent to which 
a test environment is able to generate valid test results. To this end, the validity of the test 
environment must be measured and evaluated. Depending on the test environment type, different 
parts of the system are modeled. The model quality of each individual model must be evaluated 
depending on the purpose of the model and the test objective, and with respect to credibility. In 
addition, the interaction of the models and the run time of the test execution must be validated. 



Simulations in particular require additional computing time for rendering and environment simulation. 
Here, it must be validated that these do not have a negative impact on the validity of the test. 
Furthermore, there are increasingly extensive plausibility checks within the sensors used. These checks 
must also be sufficiently well stimulated in the simulation. The validity concerns of simulation models 
for the perception chain are discussed in chapter 6. The test bench types are addressed in section 7.5.  

Test Evaluation 
 A further perspective on the testing of perception systems is a targeted evaluation. A simple 
calculation of common metrics (e.g. mean intersection over union, mIOU) is not sufficient here. If, for 
example, the mIOU is calculated for all pedestrians present in the scenario, relevant scenes 
(pedestrians directly in front of the vehicle) and irrelevant scenes (pedestrians further away and on 
the sidewalk) are mixed together. In addition, such evaluation methods are not able to infer the 
triggering conditions for a misperception in the context of SOTIF. Perceptual errors can, for example, 
be triggered by special properties of surfaces or combinations of foreground and background. These 
triggering conditions must be extracted from a test in order to be able to increase the degree to which 
the function performs as intended. This requires structured description formats for scenarios that take 
into account the different levels of abstraction. 

 For planning algorithms, there are established description formats such as scenarios and maneuvers 
for the relevant environment or the content of a test in general, cf. [PEG2024, VVM2023]. The formats 
for test case specification for testing planning algorithms are unsuitable for testing perception 
algorithms. There are currently no special description formats tailored to perception – there is a great 
need for a systematic recording and structured description of the relevant test content. 
  

7.3  Tool-based Continuous Software Development 
 The industry is facing a set of challenges with respect to continuous integration and testing as a part 
of the entire software development process when it comes to employing the classical V-model during 
the development life cycle.   

 

Figure 36 Challenges in applying continuous integration and testing to automotive systems [AVL SFR GmbH] 

 



 Figure 36 Figure 36 Challenges in applying continuous integration and testing to automotive 
systems [AVL SFR GmbH]points to the most relevant challenges in continuous integration and testing. 
These challenges require a dedicated outline for processes, methods and tools in order to deliver 
development items within time, cost, and quality bounds and to ensure their compliance to relevant 
standards for quality and safety. The usage of simulation to integrate and test the ADS  in this context 
is one of the measures required to reach above mentioned challenges. As shown in Figure 37, the 
continuous life cycle of requirements update, function development, integration, and testing can be 
executed with high efficiency under use of flexible, but also reliable handling and automation using a 
simulation environment that includes electronic control units and other electronic subsystems. 
 

 

Figure 37 Continuous development and testing using virtual environments (AVL SFR GmbH] 

  

In order to comply with defined processes, sets of enabling or supporting tools are necessary. These 
development environments have to fulfill specific high-level requirements. First of all, the work flow 
and execution of integration and testing must represent central aspects of a state-of-the-art model 
based development. Widely established product development structures require the ability to 
configure and orchestrate various third-party tools to ensure consistently high-quality work products. 
Furthermore, efficient continuous integration and testing requires the provision of a seamless 
connection between the ADS’s architecture and the development and simulation that allows a fully 
agile continuous integration and continuous testing work flow. A precondition to use the results of 
testing using virtual environment/simulation as proof for the fulfillment of relevant safety requirement 
is a credibility assessment as described in chapter 6 including the qualification of the used tools 
according to ISO 26262.  

The Digital Loop showcase56 featured a consortium of multiple companies demonstrating a process 
for addressing the challenges associated with OTA updates for software-defined vehicles [NSB2021]. 
The primary goal of the project was to expedite the approval process for updates by employing virtual 
methods and minimizing the reliance on real-world tests. The proposed approach revolves around a 
continuous integration and continuous deployment framework. Key elements of this process include 
a high-fidelity virtual simulation environment and automated test execution and evaluation. Several 
challenges remain, such as into which environments to use for continuous integration and testing and 
how to ensure their credibility. These issues will be further elaborated in the following section. 
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7.4 Test Environment Credibility and Test Case Allocation 
 The increasing complexity of systems-of-systems and the shortened development cycles of cyber-
physical systems necessitate a paradigm shift in the application of validation methods involving 
simulation. Simulation, once primarily employed for analysis and verification, has now become deeply 
integrated into the product development process, serving as a crucial tool for validation of ADSs. As 
demonstrated in chapter 6, to validate results obtained through simulation-based test methods, it is 
essential to establish a framework for conducting credibility argumentation [UNE2022, VVM2023, 
DC2022, HS2022]. Credibility depends not only on the quality of correlation between the models and 
reality of interest, but also on the development process used, the modeling and engineering skills of 
the actors involved, and the traceability and reliability of the models, parameters, results, and 
coverage, among others. [FD2023]  

Assessing and Managing Test Environments  

Nowadays, there is a common understanding of different test environments such as Model-in-the-
Loop (MiL), Software-in-the-Loop (SiL), Hardware-in-the-Loop (HiL), Vehicle-in-the-Loop (ViL) and 
proving ground. Together with suitable test methods and use cases, these test environments can be 
found in the ASAM report on testing a software defined vehicle [ASA2022].  

 Novel requirements for the V&V of automated vehicles often necessitate the use of a combination of 
multiple test environments. The once clear separation of those environments becomes therefore 
increasingly blurred. To meet those new requirements, a modular framework needs to be formed that 
enables a flexible combination of different testing environments and ensures consistency with the 
specified objectives and system under test. The current paradigm shift in the use of simulation within 
the development process is evident through the transformation of simulation into a service. In the 
creation, execution and evaluation of a simulation, multiple stakeholders may be involved. To 
accurately assess the level of trust that can be attributed to a result obtained from such a simulation, 
it is imperative to establish a mutual understanding of the limitations. 

 Figure 38 illustrates a range of potential test environments applicable to the verification and validation 
(V&V) process. By examining four cyber-physical test benches, the depiction highlights the integration 
of multiple environments. For instance, a Hardware-in-the-Loop test bench can be utilized either 
within a virtual environment with an associated cloud simulation or in conjunction with a Vehicle-in-
the-Loop test bench. Conveying the limitations and reproducible effects of test environments poses a 
challenging task, as many of these aspects (e.g., frequency response, non-linear effects, etc.) are 
intricate and not easily captured in a simple list of bullet points. Therefore, a novel approach is 
required. While some initiatives have begun describing the system in development and the associated 
test environment using model-based systems engineering, as seen in [WMG+2024], further research 
is imperative to refine and elaborate on this approach. 
   



 

Figure 38 Illustration of diverse test environments (MiL, SiL, HiL, etc.) categorized into cloud simulation, cyber-physical test 
bench, and proving ground & road. Highlighted are instances of cyber-physical environments which utilize a combination of 

test environments. [DFF2023 

  

Choosing and Specifying Suitable Test Environments 

The challenge is to find an optimal distribution between the different test environments for specific 
use cases considering their limitations – a tradeoff between effort to prove credibility, effort for 
modeling, effort for validation, and process related topics like resources and skills. Based on the risk 
decomposition on system level, some components might not be relevant in a V&V activity. For 
instance, when validating a path planning algorithm, a highly accurate representation of the perception 
chain may not be imperative. Conversely, in the validation of the perception chain, the impact of 
vehicle dynamics might be negligible. Thus far, there has been no definitive guidance regarding the 
appropriate level of detail required for various activities within a V&V process. Hence, there is a 
pressing need to explore and define the optimal level of detail for diverse activities within a V&V 
process through dedicated research, ensuring more effective and standardized methodologies in the 
development and validation of ADS. 

 Figure 39 presents a qualitative comparison of two exemplary test strategies that provide varying 
levels of validity. Strategy 1 is a common approach, where tests on a test bench and a proving ground 
are used for approval. In strategy 2, virtual environments are used for screening of scenarios that are 
critical and need to be re-evaluated in an environment with high credibility. The total effort of both 
strategies will be different. Hence a formalized process for the selection of environments for the 
validation is necessary and needs to be researched.  

  



 

 

Figure 39 Different exemplary test strategies with associated efforts [DFF2023] 

  

7.5 Challenges in Decompositional Verification and Validation 
 For component-wise verification and validation of an ADS, as suggested in section 7.1,  we need 
compositional means of system verification and validation, permitting to decompose the overall 
assurance argument into manageable pieces that focus on sub-functions and architectural 
components. Compositional V&V builds on two steps, namely verification and validation at component 
level and the synthesis of an overall validation or verification argument from the component-wise V&V 
verdicts [BEN2018]. As achieving and verifying 100% absence of undesirable behavior is elusive, 
especially in the perception chain where a significant positive risk of misperception is inevitable, these 
compositional methods need to cover quantitative validation and verification up to an agreed 
quantitative target for component-level requirement satisfaction, with the quantitative requirements 
at component level being rigorously derived from the quantitative system-level requirements. 

 Such quantitative V&V shall provide guarantees that the frequency of requirement violations remains 
below the agreed quantitative target. Unfortunately, applicable compositional methods for 
quantitative validation and verification are currently missing, as compositionality requires adequate 
treatment of conditional probabilities rather than absolute probabilities: The frequency of 
requirement violations in a component will vary situationally and generally depends on operational 
conditions and context, as will the propagation or masking, respectively, of a component’s violating 
behavior by subsequent components or functions along the ADS’ function chain. As a consequence, 
the overall error rate of the system depends on mutually induced conditions and the interplay of 
conditional probabilities that these conditions evoke. 

 It is thus not surprising that the well-established qualitative (i.e. Boolean, generating verdicts of total 
absence of violating behavior) contract frameworks for compositional analysis and verification (cf. 
[BEN2018] for an overview) currently have no usable quantitative counterparts. Suggestions like 
[DCL2011] fail to comprehensively formalize conditional probabilities and consequently are inapt to 
trace the dependency of guarantees on distributionally varying probabilistic assumptions – an obvious 
prerequisite for successful compositional quantitative reasoning in verification and validation in 
general and for simulation- and scenario-based statistical compositional verification in particular. 
  

7.6 Future Directions and Research Needs 
 As described in sections 7.1 through 7.5 a wide array of advancements has been achieved in previous 



research projects. Nevertheless, it has become obvious that many approaches still need further 
research. Furthermore, several challenges still require the exploration of novel concepts and 
approaches. 

 Defining a societally accepted level of risk remains a challenge for manufacturers and operators of 
automated driving systems as communication about that level and associated kinds of risks is a delicate 
task. How these stakeholders can translate such risk acceptance criteria into high-level engineering 
requirements requires further investigation. A rigorous and partially quantitative risk model could 
leverage the management of such risks and assumptions that inform the risk assessment during 
verification and validation. 

 The perception chain is an important sub-system of an ADS in that regard. In order to verify and 
validate perception systems, appropriate test environments need to be designed and supplied with 
adequate test data, i.e. scenarios in the context of automated driving. These test environments still 
pose several challenges, such as assessing and managing the level of validity that these test benches 
exhibit. On one hand, selecting and specifying scenarios and associated data for test cases based on 
the ODD and use cases is an open question. On the other hand, specifying suitable metrics highly 
depends on the system under test. These metrics as well as that possibly recursive relationship 
between the two requires further research. Furthermore, the discussion should be widened about 
what baseline in testing methods and test data society expects from actors involved in V&V in order 
to ascertain a minimum level of quality, e.g. expressed through guarantees.  

 Although the validity of simulation models was addressed before in chapter 6, the need for 
investigating how to conceive credible and sufficiently valid test environments and test benches was 
identified. Leveraging a flexible combination of different environments and even novel techniques like 
simulation-as-a-service is key in order to improve the efficiency of a rigorous V&V. The research 
direction of how to use model-based systems engineering approaches to manage the trade-off 
between validity and cost and to assign test cases to test environments seems promising and worth 
pushing forward. This becomes especially evident as decompositional approaches to managing the 
systems’ complexity currently suffer from a lack of established methods that adequately capture the 
complex interdependent and often probabilistic relationships of architectural components. 
  
  



8. Architectural Requirements 
The design of system architectures for safety-critical automated systems in highly uncertain contexts 
is still a wide field of research. Especially when the systems are subject to epistemic uncertainty and 
highly context-dependent requirements, the design of such architectures becomes challenging. 

A broadly applied approach in the literature to handle uncertainty is the realization of runtime 
monitoring components for properties that cannot be guaranteed at design time. To make system 
behavior and system configurations adaptable to situations that are unknown during design and 
development, approaches in the domain of self-adaptive systems often target the design and 
implementation of models for an explicit representation of design-time knowledge as a basis for 
runtime monitoring and runtime adaptation (also referred to as models@runtime) [KG2016, 
LPR+2016, TSW2018]. The represented knowledge shall allow a system to infer suitable actions in 
unknown contexts by adapting the system behavior and/or the system configuration, where fixed rules 
may be ill-defined [MAU2000, LPR+2016, HMS2019]. The models that are used for knowledge 
representation can include models of the system architecture, (formalized) requirements, dynamic 
models for predicting the system’s behavior, models of the expectable context (i.e., the Operational 
Design Domain), and more [MAU2000, ST2013, AGJ+2014, LPR+2016, KG2016, RSS+2020, RGL+2022, 
SES2023]. 

Systems that apply such knowledge to perceive and assess the current situation as well as their current 
and future capabilities with respect to their mission objectives and are thus able to make decisions 
under uncertainty are referred to as self-aware systems in the literature [GLS16]. [ARH2023] structures 
scientific challenges concerning dynamic risk management of autonomous systems and provides a 
conceptual frame for monitoring problem classification. 

Regarding the design of system architectures in the field of automated driving, a great part of recent 
research has been focused on concrete (mostly functional and/or logical) architecture views that 
include dedicated modules for runtime monitoring [KBR12, BT2016, THS+2017, URR+2017, BNE+2018, 
TZM+2018, SAE2022], while the explicit discussion of the integration between runtime and design time 
models – especially across different architecture viewpoints – are less common in the field [KBR12, 
SME+2017a, SME+2017b, TZM+2018, AAF+2019, RSS+2020]. 

To realize a system architecture that facilitates 1) the dynamic adaptation of the perception chain, 2) 
runtime monitoring, and 3) safe degradation in case of perception insufficiencies (cf. Chapter 4 and 5), 
a combination of established architecture design concepts for automated systems and rigorous model-
centric knowledge representation that bridges design- and runtime will be required.  

 

8.1  Related Work 
Reconfigurable architectures for automated vehicles that support safe degradation by activating pre-
defined hot and cold stand by nodes have e.g. been introduced by [KBR12]. By leveraging models for 
multi-viewpoint component and interface descriptions and contract-like mechanisms for describing 
assumptions and guarantees for components and interfaces, [SME+2017a, KAK+2019, AAF+2019] 
present concepts for reconfigurable architectures that allow to generate (optimal) system 
configurations under non-functional constraints and objectives, such as timing behavior or required 
data quality. In contrast to [KAK+2019, SME+2017a], [AAF+2019] explicitly apply their analyses to 
identify operating modes that restrict the system’s operational design domain at runtime. [TZM+2018] 
present a doer-checker architecture in which a supervisor channel monitors a nominal channel based 
on knowledge that is derived from the results of hazard analyses and risk assessments. 

Regarding concrete proposals for functional and/or logical architectures for automated vehicles, 
respectively, [BT2016, THS+2017, URR+2017] present architectures that include components for 
performance monitoring. [THS+2017] suggest an architecture that includes performance monitors for 
each individual functional element and adds “fusion components” that are responsible for creating a 



coherent image of the system’s performance. Similarly, [URR+2017] describe functional elements for 
self-perception and self-representation that are responsible for processing data to assess performance 
(self-perception) and applying models to create knowledge about the internal system states and the 
current system performance. The architecture explicitly provides interfaces to adapt decision making 
depending on the current system performance. [RSS2+020] present a concept to derive runtime 
monitors for a platooning application from design-time models and explicitly bridge the gap between 
model-based safety analyses and the instantiation of runtime monitors in a limited operational design 
domain. The issue of optimal, in the sense of as informed as possible under the prevailing uncertainties 
in system observation, monitoring of complex spatio-temporal safety properties has been addressed 
in [FFK+2022].  Optimizing resilience of such condition monitoring against misperceptions has also 
been subject of [FHD+2023]; both publications demonstrate that condition monitoring can be 
rendered considerably more reliable than atomic percepts. 

With respect to the dynamic adaptation of the perception chain, early publications introduce system 
architectures that support “gaze control”, i.e. the controlled actuation of sensor (or camera) arrays 
toward areas of interest in a system’s environment depending on the systems mission [MBF+1996]. 
Conceptually related approaches have been published for grid-map-based environment perception as 
“attention maps” [HMG+2023]. Regarding the system architecture, this approach allows to 
dynamically (re)configure the processing chain to focus system resources depending on those areas of 
the environment that are most relevant for the system’s mission and depending on the perception 
performance requirements within those areas. 
 

8.2  Research Questions and Possible Ways Forward 
While the related work addresses aspects of architectures that facilitate 1) the dynamic adaptation of 
the processing chain, 2) runtime monitoring, and 3) safe degradation, open questions remain. From 
the discussed approaches, only [HMG+2023] specifically focus on the perception sub-system. At the 
same time, while the authors state that performance requirements (and in turn the available 
performance of a perception module) can be used to guide reconfiguration, they also conclude that 
performance assessment for the perception system is still a challenging element in their concept. In 
addition, none of the discussed monitoring approaches specifically focus on monitoring, and/or 
modeling, the quality of a perception sub-system. The high-level concepts of architectures for self-
adaptable systems and the domain-specific functional and logical architecture views can be a starting 
point for the CONTROL architecture – fundamental architectural concepts and interfaces of 
performance monitors to decision making and behavior generation modules must hence not be 
reinvented. 

A key question in the context of the architecture design, however, will be how actual monitoring 
components for the perception chain can be defined. For this purpose, performance models must 
be defined, as well. For the purpose of designing reconfigurable architectures that target the 
perception chain, performance models for the individual sensors, as well as performance models for 
the respective processing modules in the perception chain are required. Regarding sensor 
performance models, the research questions discussed in Chapter 4 with respect to the diligent 
identification of sensor strengths and weaknesses as well as questions regarding sensor model 
verification and validation will be crucial to answer to apply suitable performance metrics from sensor 
properties (cf. Chapter 4) to the performance metrics for the processing modules (cf. Chapter 3) – that 
provide the required expressiveness to enable dynamic adaptation and degradation. This step is also 
required for the adverse conditions of AI-based classification components, see Chapter 5. A related 
question is how resilience of such a function chain against uncertainties can be optimized while 
retaining its intended functionality, and whether such resilience optimization can be achieved 
architecturally or algorithmically. Additionally, even if performance models are available, the definition 
of monitoring thresholds becomes an additional challenge for the definition of monitoring 
architectures. In combination with the need for a coherent risk-based safety assurance cases (cf. 
Chapter 9), it remains an open but crucial issue to answer the question how such monitoring thresholds 



can be derived from the results of (possibly context-specific) risk analyses. 

While much of the related work focuses on functional, logical or software architecture views, dealing 
with uncertainty requires more than that: As mentioned in the chapter introduction, a key challenge 
for systems that operate under uncertainty in an open context are context-dependent requirements. 
For the systems in the scope of the CONTROL approach, this relevant system context is the Operational 
Design Domain. Modern architecture frameworks explicitly address the definition of architecture 
viewpoints for the representation of the system (or operational) context, use-cases, scenarios, and 
requirements. Especially in a safety-critical context, regarding the definition of assurance arguments 
(cf. Chapter 9), these representations are key for the traceability of (performance) requirements 
and/or design decisions as well as -assumptions to system architecture elements. Even if the focus of 
the CONTROL approach is on functional architecture views, the required design- and runtime models 
of the ODD and suitable runtime representations for performance requirements and -metrics must be 
defined and represented in the system architecture. 

In summary, the following research items are still unsolved from an architectural point of view: 
• Development of Performance Models: Devising detailed performance models for both individual 

sensors and processing modules within the perception subsystem to guide the dynamic 
adaptation of the system. 

• Monitoring Quality of Perception Sub-System: Establishing methodologies for continuous 
monitoring and/or modeling of the quality of the perception sub-system, which has been less 
emphasized in existing literature. 

• Defining Monitoring Thresholds: Determining appropriate monitoring thresholds in conjunction 
with risk analysis outcomes, a crucial step for the suitable definition of monitoring 
architectures. 

• Resilience Optimization: Investigating how the resilience of function chains against uncertainties 
can be optimized, exploring whether these solutions are architectural, algorithmic, or a 
combination of both. 

• Performance Metrics and Dynamic Adaptation: Linking sensor properties with performance 
metrics for processing modules to empower dynamic adaptation and degradation under 
adverse conditions. 

• Architecture Frameworks and ODD Representations: Integrating design and runtime models 
within modern architecture frameworks to ensure the traceability of performance 
requirements and design decisions within the ODD. 

• Knowledge Representation Across Architectural Viewpoints: Enhancing the representation of 
knowledge to span across different architectural viewpoints, ensuring that decisions made at 
design time remain valid and operational at runtime. 

 
  



9. Putting it all together: Deriving Safety Assurance Cases for 
highly automated systems exploiting digital twins 

9.1 Motivation / Need for assurance cases 
The previous sections have laid out the various open technological challenges, which need to be solved 
to construct and validate a highly automated system for operation with bounded risk in complex open 
environments. The overall assurance process involves a large number of assumptions and decisions, 
which are interrelated with each other. A statement about the acceptance of risks associated with a 
deployed system can only be made if the meaning and sufficiency of created evidence, e.g. concrete 
validation test results, for the claims to be demonstrated is made explicit.  

Structured assurance cases are an established means to make the safety reasoning assessable for 
certification bodies and aid companies during constructive assurance. Technically, an assurance case 
is a “reasoned, auditable artefact that supports the contention that its top-level claim is satisfied, 
including systematic argumentation and its underlying evidence and explicit assumptions that support 
the claim. [It contains:] 

• one or more claims about properties; 
• arguments that logically link the evidence and any assumptions to the claim(s); 
• a body of evidence and possibly assumptions supporting these arguments for the claim(s); and 
• justification of the choice of top-level claim and the method of reasoning.” [ISO 25026-1] 

Thus, assurance cases enable to tell a system’s “safety story” in a step-wise manner by explicitly laying 
out 1) the decomposition strategies of the top safety claim in smaller sub claims (e.g. related to 
problem space analysis or validation strategies) and 2) the strength of created evidence to support 
these claims. This abstract view on the safety story enables parties to identify systematic flaws in their 
assurance processes early. More importantly the abstract view provides a means to communicate the 
story to external stakeholders who are not involved deeply in the development and assurance process. 
While the idea of making the safety reasoning explicit for different stakeholders is the central driver 
for the use of assurance cases in the first place, there exist various concrete methods and notations to 
operationalize this idea. The most prominent representants are the Claims-Argument-Evidence (CAE)57 
and the Goal Structuring Notation (GSN)58 tightly related to the OMG standardized Structured 
Assurance Metamodel (SACM)59. 

For the realization of automated vehicles, engineers have to cope with significantly higher complexity 
of system, environment and machine-learning based perception, compared to pre-existing software 
systems in the transportation domain. With this increased complexity and new software development 
paradigms, methods to develop comprehensive and convincing safety assurance cases are more 
important than ever. While past German and European flagship projects have focused on holistic (V&V 
methods) and specific (scenario-based validation: PEGASUS, simulation technology: SetLevel & Vivid, 
ML: KI-absicherung) assurance case frameworks, no proven assurance case patterns exist for 
addressing and confining risks stemming from uncertainties in perception components with digital 
twin-based continuous validation. 
 

9.2 State-of-the-art assurance case frameworks 
The projects PEGASUS, V&V Methods and SET Level, all part of the PEGASUS Project family, contributed 
methods and technologies to build a holistic safety assurance case that is based on a scenario- and 
simulation-based verification and validation approach.  
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PEGASUS60 presents four layers to structure a safety argument for ADS: 1) an ADS acceptance model, 
based on established technology acceptance models, 2) a GSN-based safety assurance case including 
extensions of the GSN standard to rate the credibility of safety case elements, 3) a description of 
methods and tools used to generate evidence, and 4) the description of concrete evidence generated 
by methods and tools. The PEGASUS approach thus covers highly relevant aspects by addressing the 
credibility of claims and arguments in the safety case as well as the credibility of methods, tools, and 
evidence. However, the PEGASUS approach does not consider a dedicated confidence argument, why 
Methods, Tools are suitable to generate credible evidence. (Mazzega, J. & Maus, A., 2019).  
V&V Methods61 covers similar aspects but builds the assurance case on an exhaustive product and 
confidence argument. The argument is structured by patterns that shall enable a sufficiently complete 
decomposition of assumptions with respect to the “open context” (i.e. the essential unknowns in the 
design of the Operational Design Domain). This decomposition is supported by arguments that are 
based on coverage of normative sources, objective evidence and the refutation of subjective doubts 
in the elements of the assurance case. The VVM assurance case argues from a risk-based perspective 
what allows to tailor the composition of the argument for different stakeholder perspectives on safety. 
While the assurance case contains a general “Top-Level” argument. Details are only provided for the 
concrete methods that have been developed in the project. The VVMethods assurance case does not 
systematically consider aspects related to uncertainty in the perception chain. 

While PEGASUS and V&V Methods focused on methodological frameworks to realize scenario-based 
safety assurance, the SET Level62 project had a technical focus on simulation technology. A major result 
is the Credible Simulation Process Framework63, which enhances the development and validation of 
automated driving functions through the use of simulation. It provides a structured set of processes 
and procedures that assure traceability, adaptability to specific organizational needs, and promotes 
collaboration, offering its users a modular and reusable approach to integrating credible simulation 
tasks into their engineering workflows. The framework provides an extensive basis for structuring 
assurance arguments specifically focusing on simulation credibility. 

While an explicit focus was placed on pre-deployment assurance in the PEGASUS family, continuous 
post-deployment safety monitoring and update processes were the subject of the Step-Up!CPS64 
project and the ongoing AutoDevSafetyOps65 project. 

Specifically for the perception chain including machine-learning-based components, the following 
intiatives contributed with assurance approaches and argumentation fragments. 

Within the KI-Absicherung66 project, an approach67 for safety assurance of machine-learning-based 
perception functions was developed. The need for an understanding of the potential causes of 
insufficiencies in the ML models is emphasized such that this can be used to identify appropriate 
design-time measures to minimize the risk of insufficiencies as well as operation-time measures to 
mitigate against inevitable residual errors in the ML model. Design-time measures could include 
improving the quality of training data, appropriate selection of ML technologies architectures and 
development approaches as well as suitable testing procedures. Operation-time measures to identify 
and compensate for residual insufficiencies in the model could include out-of-distribution detection, 
use of ensembles and online monitoring of environment assumptions. Furthermore, the following 
categories of evidence were proposed to support a safety assurance argument:  
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1. direct confirmation of residual error rates of the ML-based function based on a detailed 
definition of acceptance criteria,  

2. Evaluation of the relevance of ML-specific insufficiencies such as robustness, generalization, 
brittleness, fairness and explainability and their potential impact on safety requirements, 

3. Evaluation of the effectiveness of design-time controls to reduce the presence of insufficiencies 
and  

4. Evaluation of the effectiveness of operation-time controls to mitigate the effects of residual 
insufficiences in the model. 

However, it should be noted that due to the lack of explainability of many ML models as well as the 
gaps between the semantic specification space (in terms of ODD ontologies), the syntactic space (in 
terms of inputs to the model such as individual pixel values) and the latent space representing the 
learnt concepts, it will typically not be possible to perform a causal safety analysis per failure. 
Therefore, such causes need to be hypothesized based on various observations and the effectiveness 
of counter-measures equally observed via a number of indirect measurements. 

The ongoing SAFE.Train68 project is developing approaches, which build upon the results of KI-
Absicherung, applied to perception tasks for driverless trains. Current work on assurance arguments 
within the project is focused on the creation of an appropriate set of safety requirements including a 
mapping to measurable safety-related properties of the ML-models including the identification of 
suitable metrics and threshold values. These in turn will be used to construct a reference assurance 
argument linking high-level safety requirements to ML-specific properties and related evidence. 

The Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)69 provides an 
overview of different ML-lifecycle stages and guides the development of assurance cases for ML 
components by examining each stage in turn. The guideline emphasizes that the development of an 
effective safety argument requires an iterative process involving a large number of stakeholders. 
Furthermore, it stresses the importance that the safety considerations are meaningful only when 
scoped within the wider system and operational context. The complementary Guidance on the Safety 
Assurance of Autonomous Systems in Complex Environments (SACE)70 provides assurance argument 
patterns for the identification, decomposition, verification and validation of system safety 
requirements at the system level.  

A recent publication71 has explicitly addressed how properties of open context systems and the use of 
machine learning introduces uncertainty into the safety assurance process. The paper explored how 
the resulting uncertainty associated with our understanding of the environment and task, our 
observations used to develop (train) and evaluate the system and the technical system itself can be 
used to inform the safety assurance task. Furthermore, it was proposed that definitions of types and 
severity of uncertainty could be used to evaluate the confidence with which arguments and supporting 
evidence can be evaluated for each of these dimensions. The paper also motivates an inherently 
iterative development assurance process as a necessary means for the continual reduction of 
uncertainty both within the system as well as the assurance process itself. 

Many of the above-mentioned contributions to the state-of-the-art are informing the upcoming 
publication of ISO PAS 8800 Road Vehicles – Safety and Artifical Intelligence, the publicly available 
specification on safety and AI for use within road vehicle applications. The standard proposes a 
structured assurance argument and evidence to support demonstrate that a set AI-specific safety 
properties are met and can be traced to the system-level safety requirements. An iterative approach 
to the development of the argument, including continual re-evaluation during operation is further 
proposed. 
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9.3 Research needs 
The surveyed landscape has revealed substantial advancements in assurance arguments for 
automated driving systems. Specifically, the focus rested on the most pressing challenges scenario-
based system validation, credible simulation processes and the assurance of ML-based components. 
Despite this progress, the articulation of assurance case patterns that deliver comprehensive coverage 
of uncertainties within the perception chain using digital twins for continuous validation is an open 
research problem. The following research gaps highlight aspects, which need to be addressed. 

Integration of Holistic Assurance Case Frameworks 

A seamless integration of assurance case frameworks from the aforementioned projects is paramount. 
The aim is to encompass the entire system lifecycle, including pre-deployment digital twin-based 
virtual testing, real-world field testing and operational safety assurance. 

The challenge here is twofold: 
• Establishing a robust qualitative and quantitative link between the system-level risk acceptance 

criteria and the specific uncertainties within the perception chain. 
• Developing a cohesive argument structure that controls uncertainty from the perception chain, 

collating evidence from perception-specific sub-processes including model validation, virtual 
and field testing, and post-deployment safety monitoring. This methodology should aim to 
dynamically trace and statically confine the impact of uncertainty on critical decisions, 
supported by safety contracts across the prediction, decision, and maneuver execution layers. 

Harmonizing Simulation Credibility Arguments with System Risk 

Verification and validation methods (Chapter 7) provide a verification and validation concept putting 
all the measures into context to achieve an acceptable residual system risk. The simulation 
environment plays a major role in it, as it provides the evidence from digital twin-based virtual tests. 
Based on the work done in the SetLevel project, concretized arguments need to be created 
harmonizing the credible simulation processes with varying requirements and their associated system 
risks.  

Concretizing Product and Process Arguments for the Perception Chain 

Within this context, the intricacy lies in garnering solidified product and process arguments for the 
perception chain. This involves an in-depth application of digital twins to generate evidence, fortifying 
the safety argument. To that end, the concretization of the methods described in the previous sections 
focusing on model validation, virtual and field testing, online monitoring, architectural uncertainty 
control as well as safety-contract-based prediction, decision and maneuver execution will be the basis 
to concretize the decomposition of and required evidence in product and process arguments. 

Addressing Uncertainty in Evidence and Arguments 

Systematically and continuously identifying, assessing and handling possible concerns regarding the 
robustness of arguments, and strength of the underpinning evidence must form one focus of the next 
research frontier. Generalizable approaches on uncertainty handling in assurance arguments offer a 
foundation to build upon72. These accommodate two perspectives: 

1. Assurance arguments need to effectively address environmental/task uncertainties, observation 
(sensor/data) reliability, and system/model certainty to ensure risks are constrained to an 
acceptable level. 

2. A need exists to analyze uncertainty within the assurance argument's own framework, appraising 
the integrity of evidence, validity of assumptions, and the robustness of the argument structure 
itself. 
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These approaches are not only pertinent to the perception chain of the system in question but also 
underscore the white paper’s objectives. 

Stakeholder-Centric Communication of Assurance Cases 

The effective communication of safety evidence and engineering artifacts to a diverse array of 
stakeholders is a significant research area deserving exploration. Current practices largely focus on 
substantiating safety assurance for regulatory purposes rather than addressing information 
consumption needs across various stakeholders—type approval bodies, insurers, law enforcement, 
and the general public. Preliminary concepts such as ‘assurance case views,’ envisioned by the 
PEGASUS V&V Methods project, hint at the customization of safety argumentation to aid different 
stakeholder groups in fulfilling their roles. 

Reusable Assets and Argumentation Contents 

Another gap exists in the formulation of re-usable assets for broader application in the industry. The 
goal is to create a methodology that not only aids in the construction of an assurance case but also 
promotes its adoption across diverse use cases. This encompasses the curation of assurance case 
templates or patterns, annotated notations, and the development of supportive tools that align with 
industry patterns. 

To summarize, the outlined areas of research are critical to close existing gaps and propel the 
development of robust safety assurance methods in automated driving systems using a digital twin 
paradigm: 

1. Holistic Frameworks Integration: Bridging digital twin continuous validation with lifecycle 
coverage. 

2. Simulation Credibility Argumentation: 
3. Perception Chain Arguments: Product and process argument concretization, incorporating 

digital-twin generated evidence. 
4. Uncertainty in Assurance: How to robustly address and encompass uncertainty in environmental 

understanding and within the argumentation process itself through systematic confidence 
argumentation. 

5. Stakeholder Communication: Enhancing the delivery of assurance case content in a stakeholder-
specific manner. This includes a model-based integration of stakeholder views based on a 
formalization of different assurance and argumentation terminology. 

6. Reusable Assurance Case Assets: Developing and disseminating reusable assurance case 
components for industry application. 

These research needs, once met, will advance the creation of compelling, comprehensive, and 
convincing safety assurance cases, critical for the widespread acceptance and deployment of highly 
automated systems.  
 



 

Figure 40 41 Assurance Case Framework for ADS exploiting digital twin-based validation 

Figure 40 visually puts the research needs into the context of an assurance process. The chapters 4 
(sensor characterization and modeling), 5 (sensor fusion and characterization), 6 (digital twins and 
simulation environments), 7 (verification and validation methods) and 8 (Uncertainty control 
architectures) of this whitepaper provide methods, which generate structure and evidence to be used 
in the argumentation. Chapter 3 (quality metrics and quality guarantees) is closely related to the 
argumentation, as quality metrics and required thresholds to achieve acceptable risk are influenced by 
the way in which the argumentation is built up. With this basis to build up the argumentation, the 
assurance case framework lays out the elements the identified research needs and how their 
hierarchical relationship looks like: The PEGASUS VVM safety argumentation framework as a top-level 
structure provides placeholders to integrate concretized arguments regarding uncertainty control 
architectures, digital-twin based virtual testing, simulation framework credibility, and operational 
safety assurance. While the dark blue elements represent concrete argumentation patterns based on 
the developed methods, the red elements are capabilities of the argumentation framework itself: 
Reusable assurance case assets like patterns realized in tools are important means for adoption of 
methodical approaches. The stakeholder-specific argument communication requires concepts and 
realization to present the same assurance evidence along different argumentation lines, dependent 
on the needs of different stakeholders. 
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Annex 2: Glossary 
This glossary defines resp. explains some of the terms used within this roadmap with respect to 
validation of highly automated cars. It is meant to be a supplement to the already very extensive 
PEGASUS family glossar [PEG2023], which we recommend for further explanations. 
 

Automated Driving System (ADS) 
Is the hardware and software that are collectively capable of performing the entire Dynamic 
Driving Task (DDT) on a sustained basis, regardless of whether it is limited to a specific 
operational design domain (ODD); this term is used specifically to describe a Level 3, 4, or 5 
driving automation system. 
Reference: SAE J3016:2018, 3.2 

Architecture 
Fundamental concepts or properties of an entity in its environment (3.13) and governing 
principles for the realization and evolution of this entity and its related life cycle processes 
Reference: ISO 42010:2022 

Artifact 
An artifact in a sensor measurement is a noticeable deviation from ground truth in the sensor 
readings that is inherent in the sensor measurement principle and its system design. 

Conceptual validation 
The process of determining the degree to which a conceptual model (as defined in this NASA 
Technical Standard) or model design adequately represents the real world from the 
perspective of the intended uses of the model or the simulation. 
Reference: NASA STD 7009A 

Coverage 
Degree of covering the possible concerete instances of  an abstract item, like an ODD or an 
operational scenario; esp. w.r.t. V&V activities: test coverage, simulation coverage 

Credibility 
The “quality to elicit belief or trust in [modeling and simulation] results” 
Reference: NASA STD 7009A 

Decomposition (artifact) 
Set of components and interfaces obtained by applying the process of decomposition to a 
system 

Decomposition (process) 
Process of splitting a system into its components with defined interfaces, usually decreasing 
the level of abstraction 

Dependability 
The persistence of the avoidance of failures that are unacceptably frequent or severe, when 
facing changes. 
Reference: Laprie, J.-C.: "From Dependability to Resilience". In: Dependable Systems and 
Networks, 2008 

Electronic horizon 
The electronic horizon refers to an advanced system that extends the perception of the vehicle 
beyond the range of its onboard sensors. It integrates detailed digital map data and GPS 
positioning to provide a predictive view of the road network ahead.  



Environment simulation 
Environment simulations represent the vehicle's physical environment in a virtual world. They 
include roads, buildings, other vehicles, pedestrians and all potential obstacles. 

Failure 
Termination of an intended behaviour of an element (3.41) or an item (3.84) due to a fault 
(3.54) manifestation  
Reference: ISO 26262-1:2018, Def. 3.50 

Failure Mode and Effects Analysis (FMEA) 
FMEA  is a systematic method for evaluating a process to identify where and how it might fail 
and to assess the relative impact of different failures. It aims to identify potential failure 
modes, determine their effect on the operation of the product or process, and identify actions 
to mitigate the failures. 

Field of view  (FoV) 
The angle, from which a sensor is receiving information, for which a specified detection 
performance is reached. Typically, the angle is given as azimuth and elevation angle. 

Functional Mockup Unit (FMU) 
Functional Mockup Unit (FMU) is a component modeling the behavior of a dynamic entity 
within an concrete scenario while being executed. It contains an abstract model and can 
contain a solver. It connects via the Functional Mockup Interface (FMI) to the tool. 

Ground truth 
Ground truth refers to a set of measures known to be more accurate 
than the measurements of the SUT. The ground truth represents a reference which 
is used as a standard for comparison. It is possible that the ground truth was not or 
cannot be checked.[1, pp.28-30] In context of driving datasets, ground truth 
typically refers to human annotation.[2, p.3357][3, p.4] 

Hardware-in-the-Loop (HIL) 
The third in-the-loop method is used to transfer the developed models from the SiL 
environment to the real components or be replaced by them respectively. The method is 
referred to as Hardware-in-the-Loop (HiL). In distributed systems, this stage is typically 
performed in several steps. First, the individual components are tested independently against 
their respective specifications. Here, a simulation environment is used that provides the 
interfaces of the components that are to be tested. Once all components are verified with this 
method, they are partially integrated using the same method to also verify their interaction. At 
the end of this stage, the entire system exists in real components and is tested against its 
specification up to the level of the logical architecture.[PEG2023) 

Operational context 
Context: [...] relationships [...], resolved around a selected [entity]-of-interest - Vorschlag 
Operational Context: "relationships resolved around a selected entity of interest relating to the 
operation of the entity" 
Reference: Flood, R.L. and E.R. Carson. 1993. Dealing with complexity: An introduction to the 
theory and application of systems science, 2nd ed. New York, NY, USA: Plenum Press. (Nach 
SEBoK) 

Operational design domain (ODD) 
ODD is defined as the set of all “operating conditions for which a given SUT (driving 
automation system) is designed, including all restrictions regarding environmental, geography 
and time of day and/or the required presence or absence 
of certain traffic or road features”. The ODD is the design area of a SUT with regard to its 
operation. 



Operational validation 
The process of determining the degree to which a simulation model adequately represents the 
real world in a specific application 

P-Box 
A p-box is a probabilistic box or a range of uncertainty associated with a probability 
distribution. Specifically, it represents uncertainty in the form of a range of possible probability 
distributions, rather than a single, fixed distribution. Instead of assuming a precise probability 
distribution for uncertain parameters or variables, which may be challenging or even 
impossible to determine accurately, a p-box defines a range of possible distributions that 
encapsulate the uncertainty.  

Risk 
Combination of the probability of occurrence of harm and the severity of that harm 
Reference: ISO 26262, ISO 21448, ISO/IEC Guide 51 

Safety 
Absence of unreasonable risk 
Reference: ISO 26262, ISO/TR 4804, ISO 21448, ISO/IEC Guide 51 

Safety of the intended fuctionality (SOTIF) 
The absence of unreasonable risk due to a hazard caused by: a. the insufficiencies of 
specification of the intended functionality at the vehicle level, or b. the insufficiencies of 
specification or performance limitations in the implementation of E/E elements in the system 
Reference: ISO 21448 

Scenario 
Description of the temporal development between several scenes in a sequence of scenes. 
Every scenario starts with an initial scene. Actions/events, as well as goals/values, can be 
specified to characterise this temporal development within a scenario. SOTIF 
Reference: [PEG2023] 

Sensor Model 
Virtual entity of a sensor based on effects and uncertainties containing signal propagation and 
processing. Therefore, the sensor interfaces are identical. 

Simulation model 
The operational or usable implementation of the conceptual model, including all 
mathematical, numerical, logical, and qualitative representations. 
Reference: NASA STD 7009A 

Software-in-the-Loop 
The Software-in-the-Loop method (SiL) allows for an assurance up to the level of the individual 
components. This is achieved by transferring the previously created models into a simulation 
environment that is very similar to the technical characteristics of the target system in terms of 
computing power, real-time behavior, or resolution accuracy but is still hardware independent 
(Martinus et al. 2013). Therefore, the software in the loop (SiL) method offers the possibility to 
check the specifications of the individual components of a system prior to its implementation 
and adjust them if necessary.[PEG2023] 

System level 
Level of abstraction where the ADS-equipped vehicle is considered as a whole and the 
operational situation is the system's operational context. 

System under test 
The system under test (SUT) is, like components, not necessarily part of the simulation 
framework. While the simulation must be able to execute without the SUT, the SUT acts as an 



independent agent. [SL] The system to be tested is called the system under test. The 
complexity of the SUT used depends on the tests to be carried out. [PEG2023] 

Test bench 
Technical device' (consisting of hardware and software) that provides test objects and 
elements intended to execute test cases; common test bench types are hardware-in-the-loop, 
model-in-the-loop, software-in-the-loop, vehicle-in-the-loop 
Reference: M. Steimle, T. Menzel, and M. Maurer, “Toward a Consistent Taxonomy for 
Scenario-Based Development and Test Approaches for Automated Vehicles: A Proposal for a 
Structuring Framework, a Basic Vocabulary, and Its Application,” IEEE Access, vol. 9, pp. 
147828–147854, 2021, doi: 10.1109/access.2021.3123504 

Testing 
Process of creating objective evidence concerning the actual properties of a system or a model 
hereof 

Time-To-Collision 
Time-To-Collision (TTC) is a measure for evaluating traffic scenarios (e.g. in simulation). It 
predicts the time until a collision occurs between objects based on dynamic models. 

Uncertainty (development) 
"broad and general term used to describe an imperfect state of knowledge or a variability […]" 
Reference: based on NASA STD 7009A 

Uncertainty (technical) 
1. "estimated amount […] by which an observed or calculated value may differ from the true 
value" 
2. "non-negative parameter characterizing the dispersion of values attributed to a measured 
quantity" 
Reference: based on NASA STD 7009A 

Unreasonable (level of) risk 
Risk judged to be unacceptable in a certain context according to valid societal moral concepts" 
Reference: ISO 26262, ISO/TR 4804, ISO 21448, ISO/IEC Guide 51 

Validation 
Confirmation, through the provision of objective evidence, that the requirements for a specific 
intended use or application have been fulfilled" 
Reference: ISO/IEC 9000 

Validity (of a simulation model) 
Validity of a simulation method: The uncertainty (taking into account the precision of the 
simulation framework) which affects the result 

Vehicle-in-the-Loop 
Vehicle-in-the-Loop (ViL) is a newer method for usefully complementing and enhancing the 
development of advanced driver assistance systems with the V-model. It addresses the need of 
many driver assistance functions for a complex test drive and a high standard of functional 
safety. This group of driver assistance functions will progress in importance and size. A major 
reason for this is the growing number of vehicle variants that offer driver assistance functions 
and which must remain safe even with the ever-increasing degree of automation and network 
integration. The ViL method allows the operation of the real test vehicle in a virtual 
environment. The coupling between the vehicle and the virtual environment can be done in 
two ways. One way is by creating an interface to the available environment sensors and, thus, 
replacing the real sensors. At this interface, the simulation environment is feeding simulated 
sensor signals, which correspond to the sensor response from a real environment. [HK15a, 
pp.166,167] Otherwise it is possible to maintain the real sensors and stimulate them 



artificially, as it is possible for Radar sensors [BAB+21], Lidar sensors, camera and ultrasonic 
sensors [RGN17]. In both variants, the real test vehicle responds to attributes and events of 
the virtual environment. This way, critical driving maneuvers with obstacles or objects on a 
collision course can be tested reliably and reproducible. The created interface can also be used 
to generate the sensor signals as they would occur due to a changed position in a vehicle 
variant or due to different tolerances. This method therefore offers the possibility to test these 
variants or tolerances with a single test vehicle. In addition to the considerably more safe test 
operation, this allows efficient testing and application of advanced driver assistance systems. 
This results in a substantial economic gain with respect to the test drive when it comes to 
driver assistance systems. [HK15a, pp.166,167] 
Reference: • Stephan Hakuli and Markus Krug. Virtuelle integration. In Hermann Winner, 
Stephan Hakuli, Felix Lotz, and Christina Singer, editors, Handbuch Fahrerassistenzsysteme, 
pages 125–138. Springer Fachmedien Wiesbaden, Wiesbaden, 2015                                     - 
Sreehari Buddappagari, M.E. Asghar, F. Baumgartner, S. Graf, F. Kreutz,¨ A. Loffler, J. Nagel, T. 
Reichmann, R. Stephan, and Matthias A. Hein. Over-¨ the-air vehicle-in-the-loop test system for 
installed-performance evaluation of automotive radar systems in a virtual environment. In 
2020 17th European Radar Conference (EuRAD), pages 278–281, 2021 • Romain Rossi, Clement 
Galko, and Hariharan Narasimman. 11 vehicle hardwareinthe-loop system for adas virtual 
testing. 2017 

Verification 
confirmation, through the provision of objective evidence, that specified requirements have 
been fulfilled 
Reference: ISO/IEC 9000 

Verification (of simulation model) 
The process of determining the extent to which an M&S is compliant with its requirements and 
specifications as detailed in its conceptual models, mathematical models, or other constructs. 
Reference: NASA STD 7009A 

Virtual environment 
Being on or simulated on a computer or a computer network. [Mer21] 

Vulnerable Road User 
Traffic participants such as pedestrians or cyclists that are not protected by a metal vehicle 
body and are thus more susceptible to injury or death in the event of a collision.  
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